987 resultados para Colony forming units
Resumo:
In Intensive Medicine, the presentation of medical information is done in many ways, depending on the type of data collected and stored. The way in which the information is presented can make it difficult for intensivists to quickly understand the patient's condition. When there is the need to cross between several types of clinical data sources the situation is even worse. This research seeks to explore a new way of presenting information about patients, based on the timeframe in which events occur. By developing an interactive Patient Timeline, intensivists will have access to a new environment in real-time where they can consult the patient clinical history and the data collected until the moment. The medical history will be available from the moment in which patients is admitted in the ICU until discharge, allowing intensivist to examine data regarding vital signs, medication, exams, among others. This timeline also intends to, through the use of information and models produced by the INTCare system, combine several clinical data in order to help diagnose the future patients’ conditions. This platform will help intensivists to make more accurate decision. This paper presents the first approach of the solution designed
Resumo:
The occurrence of Barotrauma is identified as a major concern for health professionals, since it can be fatal for patients. In order to support the decision process and to predict the risk of occurring barotrauma Data Mining models were induced. Based on this principle, the present study addresses the Data Mining process aiming to provide hourly probability of a patient has Barotrauma. The process of discovering implicit knowledge in data collected from Intensive Care Units patientswas achieved through the standard process Cross Industry Standard Process for Data Mining. With the goal of making predictions according to the classification approach they several DM techniques were selected: Decision Trees, Naive Bayes and Support Vector Machine. The study was focused on identifying the validity and viability to predict a composite variable. To predict the Barotrauma two classes were created: “risk” and “no risk”. Such target come from combining two variables: Plateau Pressure and PCO2. The best models presented a sensitivity between 96.19% and 100%. In terms of accuracy the values varied between 87.5% and 100%. This study and the achieved results demonstrated the feasibility of predicting the risk of a patient having Barotrauma by presenting the probability associated.
Resumo:
Polygyny, characterized by the presence of several egg-laying queens, is considered as a temporary colony status. In stingless bees it is rarely observed. This paper reports the first case of natural polygyny in Melipona scutellaris colony, with five egg-laying queens.
Resumo:
Bacteriophage-host interaction studies in biofilm structures are still challenging due to the technical limitations of traditional methods. The aim of this study was to provide a direct fluorescence in situ hybridization (FISH) method based on locked nucleic acid (LNA) probes, which targets the phage replication phase, allowing the study of population dynamics during infection. Bacteriophages specific for two biofilm-forming bacteria, Pseudomonas aeruginosa and Acinetobacter, were selected. Four LNA probes were designed and optimized for phage-specific detection and for bacterial counterstaining. To validate the method, LNA-FISH counts were compared with the traditional plaque forming unit (PFU) technique. To visualize the progression of phage infection within a biofilm, colony-biofilms were formed and infected with bacteriophages. A good correlation (r=0.707) was observed between LNA-FISH and PFU techniques. In biofilm structures, LNA-FISH provided a good discrimination of the infected cells and also allowed the assessment of the spatial distribution of infected and non-infected populations.
Resumo:
This research work explores a new way of presenting and representing information about patients in critical care, which is the use of a timeline to display information. This is accomplished with the development of an interactive Pervasive Patient Timeline able to give to the intensivists an access in real-time to an environment containing patients clinical information from the moment in which the patients are admitted in the Intensive Care Unit (ICU) until their discharge This solution allows the intensivists to analyse data regarding vital signs, medication, exams, data mining predictions, among others. Due to the pervasive features, intensivists can have access to the timeline anywhere and anytime, allowing them to make decisions when they need to be made. This platform is patient-centred and is prepared to support the decision process allowing the intensivists to provide better care to patients due the inclusion of clinical forecasts.
Resumo:
The decision support models in intensive care units are developed to support medical staff in their decision making process. However, the optimization of these models is particularly difficult to apply due to dynamic, complex and multidisciplinary nature. Thus, there is a constant research and development of new algorithms capable of extracting knowledge from large volumes of data, in order to obtain better predictive results than the current algorithms. To test the optimization techniques a case study with real data provided by INTCare project was explored. This data is concerning to extubation cases. In this dataset, several models like Evolutionary Fuzzy Rule Learning, Lazy Learning, Decision Trees and many others were analysed in order to detect early extubation. The hydrids Decision Trees Genetic Algorithm, Supervised Classifier System and KNNAdaptive obtained the most accurate rate 93.2%, 93.1%, 92.97% respectively, thus showing their feasibility to work in a real environment.
Resumo:
It is estimated that 5 to 8 million individuals with chest pain or other symptoms suggestive of myocardial ischemia are seen each year in emergency departments (ED) in the United States 1,2, which corresponds to 5 to 10% of all visits 3,4. Most of these patients are hospitalized for evaluation of possible acute coronary syndrome (ACS). This generates an estimated cost of 3 - 6 thousand dollars per patient 5,6. From this evaluation process, about 1.2 million patients receive the diagnosis of acute myocardial infarction (AMI), and just about the same number have unstable angina. Therefore, about one half to two thirds of these patients with chest pain do not have a cardiac cause for their symptoms 2,3. Thus, the emergency physician is faced with the difficult challenge of identifying those with ACS - a life-threatening disease - to treat them properly, and to discharge the others to suitable outpatient investigation and management.
Resumo:
v. 1
Resumo:
v. 2
Resumo:
v. 3
Resumo:
v. 6
Resumo:
v. 4 pt. 2
Resumo:
v. 4 pt. 1
Resumo:
v. 5 pt. 1