875 resultados para Coastal zone management


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Study Goals and Objectives: 1) Improve existing nutrient-related eutrophication assessment methods, updating (from early 1990s to early 2000s) the eutrophication assessment for systems included in the study with the improved method. 2) Develop a human-use/socioeconomic indicator to complement the assessment indicator. The human-use indicator was developed to evaluate costs of nutrient-related degradation in coastal waters and to put the issue into a broader context relevant to the interested public and legislators as well as to scientists. 3) Project objectives included collecting existing water quality data, developing an accessible database appropriate for application to a national study, and applying the assessment methods to 14 coastal systems – nine systems north of Cape Cod and five systems south. The geographical distribution of systems was used to examine potential regional differences in condition. 4) The intent is to use the lessons learned in this pilot study on a national scale to guide completion of an update of the 1999 National Estuarine Eutrophication Assessment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Southeast Bering Sea Carrying Capacity (SEBSCC, 1996–2002) was a NOAA Coastal Ocean Program project that investigated the marine ecosystem of the southeastern Bering Sea. SEBSCC was co-managed by the University of Alaska Fairbanks, NOAA Alaska Fisheries Science Center, and NOAA Pacific Marine Environmental Laboratory. Project goals were to understand the changing physical environment and its relationship to the biota of the region, to relate that understanding to natural variations in year-class strength of walleye pollock (Theragra chalcogramma), and to improve the flow of ecosystem information to fishery managers. In addition to SEBSCC, the Inner Front study (1997–2000), supported by the National Science Foundation (Prolonged Production and Trophic Transfer to Predators: Processes at the Inner Front of the S.E. Bering Sea), was active in the southeastern Bering Sea from 1997 to 1999. The SEBSCC and Inner Front studies were complementary. SEBSCC focused on the middle and outer shelf. Inner Front worked the middle and inner shelf. Collaboration between investigators in the two programs was strong, and the joint results yielded a substantially increased understanding of the regional ecosystem. SEBSCC focused on four central scientific issues: (1) How does climate variability influence the marine ecosystem of the Bering Sea? (2) What determines the timing, amount, and fate of primary and secondary production? (3) How do oceanographic conditions on the shelf influence distributions of fish and other species? (4) What limits the growth of fish populations on the eastern Bering Sea shelf? Underlying these broad questions was a narrower focus on walleye pollock, particularly a desire to understand ecological factors that affect year-class strength and the ability to predict the potential of a year class at the earliest possible time. The Inner Front program focused on the role of the structural front between the well-mixed waters of the coastal domain and the two-layer system of the middle domain. Of special interest was the potential for prolonged post-spring-bloom production at the front and its role in supporting upper trophic level organisms such as juvenile pollock and seabirds. Of concern to both programs was the role of interannual and longer-term variability in marine climates and their effects on the function of sub-arctic marine ecosystems and their ability to support upper trophic level organisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nutrient overenrichment from human activities is one of the major stresses affecting coastal ecosystems. There is increasing concern in many areas around the world that an oversupply of nutrients from multiple sources is having pervasive ecological effects on shallow coastal and estuarine areas. These effects include reduced light penetration, loss of aquatic habitat, harmfid algal blooms, a decrease in dissolved oxygen (or hypoxia), and impacts on living resources. The largest zone of oxygen-depleted coastal waters in the United States, and the entire western Atlantic Ocean, is found in the northern Gulf of Mexico on the Louisiana-Texas continental shelf. This zone is influenced by the freshwater discharge and nutrient flux of the Mississippi River system. This report describes the seasonal, interannual, and long-term variability in hypoxia in the northern Gulf of Mexico and its relationship to nutrient loading. It also documents the relative roles of natural and human-induced factors in determining the size and duration of the hypoxic zone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the past one hundred and fifty years, the landscape and ecosystems of the Pacific Northwest coastal region, already subject to many variable natural forces, have been profoundly affected by human activities. In virtually every coastal watershed from the Strait of Juan de Fuca to Cape Mendocino, settlement, exploitation and development of resou?-ces have altered natural ecosystems. Vast, complex forests that once covered the region have been largely replaced by tree plantations or converted to non-forest conditions. Narrow coastal valleys, once filled with wetlands and braided streams that tempered storm runoff and provided salmon habitat, were drained, filled, or have otherwise been altered to create land for agriculture and other uses. Tideflats and saltmarshes in both large and small estuaries were filled for industrial, commercial, and other urban uses. Many estuaries, including that of the Columbia River, have been channeled, deepened, and jettied to provide for safe, reliable navigation. The prodigious rainfall in the region, once buffered by dense vegetation and complex river and stream habitat, now surges down sirfiplified stream channels laden with increased burdens of sediment and debris. Although these and many other changes have occurred incrementally over time and in widely separated areas, their sum can now be seen to have significantly affected the natural productivity of the region and, as a consequence, changed the economic structure of its human communities. This activity has taken place in a region already shaped by many interacting and dynamic natural forces. Large-scale ocean circulation patterns, which vary over long time periods, determine the strength and location of currents along the coast, and thus affect conditions in the nearshore ocean and estuaries throughout the region. Periodic seasonal differences in the weather and ocean act on shorter time scales; winters are typically wet with storms from the southwest while summers tend to be dry with winds from the northwest. Some phenomena are episodic, such as El Nifio events, which alter weather, marine habitats, and the distribution and survival of marine organisms. Other oceanic and atmospheric changes operate more slowly; over time scales of decades, centuries, and longer. Episodic geologic events also punctuate the region, such as volcanic eruptions that discharge widespread blankets of ash, frequent minor earthquakes, and major subduction zone earthquakes each 300 to 500 years that release accumulated tectonic strain, dropping stretches of ocean shoreline, inundating estuaries and coastal valleys, and triggering landslides that reshape stream profiles. While these many natural processes have altered, sometimes dramatically, the Pacific Northwest coastal region, these same processes have formed productive marine and coastal ecosystems, and many of the species in these systems have adapted to the variable environmental conditions of the region to ensure their long-term survival.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report is the product of a panel of experts in the science of blooms of unicellular marine algae which can cause mass mortalities in a variety of marine organisms and cause illness and even death in humans who consume contaminated seafood. These phenomena are collectively termed harmful algal blooms or HABs for short. As a counterpart to recent assessments of the priorities for scientific research to understand the causes and behavior of HABs, this assessment addressed the management options for reducing their incidence and extent (prevention), actions that can quell or contain blooms (control), and steps to reduce the losses of resources or economic values and minimize human health risks (mitigation). This assessment is limited to an appraisal of scientific understanding, but also reflects consideration of information and perspectives provided by regional experts, agency managers and user constituencies during three regional meetings. The panel convened these meetings during the latter half of 1996 to solicit information and opinions from scientific experts, agency managers and user constituencies in Texas, Washington, and Florida. The panel's assessment limited its attention to those HABs that result in neurotoxic shellfish poisoning, paralytic shellfish poisoning, brown tides, amnesic shellfish poisoning, and aquaculture fish kills. This covers most, but certainly not all, HAB problems in the U.S.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Professionals who are responsible for coastal environmental and natural resource planning and management have a need to become conversant with new concepts designed to provide quantitative measures of the environmental benefits of natural resources. These amenities range from beaches to wetlands to clean water and other assets that normally are not bought and sold in everyday markets. At all levels of government — from federal agencies to townships and counties — decisionmakers are being asked to account for the costs and benefits of proposed actions. To non-specialists, the tools of professional economists are often poorly understood and sometimes inappropriate for the problem at hand. This handbook is intended to bridge this gap. The most widely used organizing tool for dealing with natural and environmental resource choices is benefit-cost analysis — it offers a convenient way to carefully identify and array, quantitatively if possible, the major costs, benefits, and consequences of a proposed policy or regulation. The major strength of benefit-cost analysis is not necessarily the predicted outcome, which depends upon assumptions and techniques, but the process itself, which forces an approach to decision-making that is based largely on rigorous and quantitative reasoning. However, a major shortfall of benefit-cost analysis has been the difficulty of quantifying both benefits and costs of actions that impact environmental assets not normally, nor even regularly, bought and sold in markets. Failure to account for these assets, to omit them from the benefit-cost equation, could seriously bias decisionmaking, often to the detriment of the environment. Economists and other social scientists have put a great deal of effort into addressing this shortcoming by developing techniques to quantify these non-market benefits. The major focus of this handbook is on introducing and illustrating concepts of environmental valuation, among them Travel Cost models and Contingent Valuation. These concepts, combined with advances in natural sciences that allow us to better understand how changes in the natural environment influence human behavior, aim to address some of the more serious shortcomings in the application of economic analysis to natural resource and environmental management and policy analysis. Because the handbook is intended for non-economists, it addresses basic concepts of economic value such as willingness-to-pay and other tools often used in decision making such as costeffectiveness analysis, economic impact analysis, and sustainable development. A number of regionally oriented case studies are included to illustrate the practical application of these concepts and techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Professionals who are responsible for coastal environmental and natural resource planning and management have a need to become conversant with new concepts designed to provide quantitative measures of the environmental benefits of natural resources. These amenities range from beaches to wetlands to clean water and other assets that normally are not bought and sold in everyday markets. At all levels of government — from federal agencies to townships and counties — decisionmakers are being asked to account for the costs and benefits of proposed actions. To non-specialists, the tools of professional economists are often poorly understood and sometimes inappropriate for the problem at hand. This handbook is intended to bridge this gap. The most widely used organizing tool for dealing with natural and environmental resource choices is benefit-cost analysis — it offers a convenient way to carefully identify and array, quantitatively if possible, the major costs, benefits, and consequences of a proposed policy or regulation. The major strength of benefit-cost analysis is not necessarily the predicted outcome, which depends upon assumptions and techniques, but the process itself, which forces an approach to decision-making that is based largely on rigorous and quantitative reasoning. However, a major shortfall of benefit-cost analysis has been the difficulty of quantifying both benefits and costs of actions that impact environmental assets not normally, nor even regularly, bought and sold in markets. Failure to account for these assets, to omit them from the benefit-cost equation, could seriously bias decisionmaking, often to the detriment of the environment. Economists and other social scientists have put a great deal of effort into addressing this shortcoming by developing techniques to quantify these non-market benefits. The major focus of this handbook is on introducing and illustrating concepts of environmental valuation, among them Travel Cost models and Contingent Valuation. These concepts, combined with advances in natural sciences that allow us to better understand how changes in the natural environment influence human behavior, aim to address some of the more serious shortcomings in the application of economic analysis to natural resource and environmental management and policy analysis. Because the handbook is intended for non-economists, it addresses basic concepts of economic value such as willingness-to-pay and other tools often used in decision making such as costeffectiveness analysis, economic impact analysis, and sustainable development. A number of regionally oriented case studies are included to illustrate the practical application of these concepts and techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This compilation of references to works which synthesize information on coastal topics is intended to be useful to resource managers in decision making processes. However, the utility must be understand in terms of its limited coverage. The bibliography is not inclusive of all the published materials on the topics selected. Coverage is clearly defined in the following paragraph. The time span of the bibliography is limited to references that were published from I983 to 1993, except for a last-minute addition of a few 1994 publications. All searches were done in mid- to late-1993. The bibliography was compiled from searches done on the following DIALOG electronic databases: Aquatic Sciences and Fisheries Abstracts, BlOSlS Previews, Dissertation Abstracts Online, Life Sciences Collection, NTlS (National Technical lnformation Service), Oceanic Abstracts, Pollution Abstracts, SciSearch, and Water Resources Abstracts. In addition, two NOAA electronic datases were searched: the NOAA Library and lnformation Catalog and the NOAA Sea Grant Depository Database. Synthesis of information is not an ubiquitous term used in database development. In order to locate syntheses of required coastal topics, 89 search terms were used in combinations which required 10 searches from each file. From the nearly 6,000 citations which resulted from the electronic searches, the most appropriate were selected to produce this bibliography. The document was edited and indexed using Wordperfect software. When available, an abstract has been included. Every abstract was edited. The bibliography is subdivided into four main topics or sections: ecosystems, coastal water body conditions, natural disasters, and resource management. In the ecosystems section, emphasis is placed on organisms in their environment on the major coastlines of the U.S. In the second section, coastal water body conditions, the environment itself is emphasized. References were found for the Alaskan coast, but none were found for Hawaii. The third section, on natural disasters, emphasizes environmental impacts resulting from natural phenomena. Guidelines, planning and management reports, modelling documents, strategic and restoration plans, and environmental economics related to sustainability are included in the fourth section, resource management. Author, geographic, and subject indices indices are provided. The authors would like to thank Victor Omelczenko and Terry Seldon of the NOAA Sea Grant Office for access to and training on the NOAA Sea Grant Depository Database. We are grateful also to Dorothy Anderson, Philip Keavey, and Elizabeth Petersen who reviewed the draft document.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Environmental managers strive to preserve natural resources for future generations but have limited decision-making tools to define ecosystem health. Many programs offer relevant broad-scale, environmental policy information on regional ecosystem health. These programs provide evidence of environmental condition and change, but lack connections between local impacts and direct effects on living resources. To address this need, the National Oceanic and Atmospheric Administration/National Ocean Service (NOAA/NOS) Cooperative Oxford Laboratory (COL), in cooperation with federal, state, and academic partners, implemented an integrated biotic ecosystem assessment on a sub-watershed 14-digit Hydrologic Unit Code (HUD) scale in Chesapeake Bay. The goals of this effort were to 1) establish a suite of bioindicators that are sensitive to ecosystem change, 2) establish the effects of varying land-use patterns on water quality and the subsequent health of living resources, 3) communicate these findings to local decision-makers, and 4) evaluate the success of management decisions in these systems. To establish indicators, three sub-watersheds were chosen based on statistical analysis of land-use patterns to represent a gradient from developed to agricultural. The Magothy (developed), Corsica (agricultural), and Rhode (reference) Rivers were identified. A random stratified design was developed based on depth (2m contour) and river mile. Sampling approaches were coordinated within this structure to allow for robust system comparisons. The sampling approach was hierarchal, with metrics chosen to represent a range from community to cellular level responses across multiple organisms. This approach allowed for the identification of sub-lethal stressors, and assessment of their impact on the organism and subsequently the population. Fish, crabs, clams, oysters, benthic organisms, and bacteria were targeted, as each occupies a separate ecological niche and may respond dissimilarly to environmental stressors. Particular attention was focused on the use of pathobiology as a tool for assessing environmental condition. By integrating the biotic component with water quality, sediment indices, and land- use information, this holistic evaluation of ecosystem health will provide management entities with information needed to inform local decision-making processes and establish benchmarks for future restoration efforts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The overall goal of the MARine and Estuarine goal Setting (MARES) project for South Florida is “to reach a science-based consensus about the defining characteristics and fundamental regulating processes of a South Florida coastal marine ecosystem that is both sustainable and capable of providing the diverse ecosystem services upon which our society depends.” Through participation in a systematic process of reaching such a consensus, science can contribute more directly and effectively to the critical decisions being made by both policy makers and by natural resource and environmental management agencies. The document that follows briefly describes the MARES project and this systematic process. It then describes in considerable detail the resulting output from the first two steps in the process, the development of conceptual diagrams and an Integrated Conceptual Ecosystem Model (ICEM) for the first subregion to be addressed by MARES, the Florida Keys/Dry Tortugas (FK/DT). What follows with regard to the FK/DT is the input received from more than 60 scientists, agency resource managers, and representatives of environmental organizations beginning with a workshop held December 9-10, 2009 at Florida International University in Miami, Florida.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The overall goal of the MARES (MARine and Estuarine goal Setting) project for South Florida is “to reach a science-based consensus about the defining characteristics and fundamental regulating processes of a South Florida coastal marine ecosystem that is both sustainable and capable of providing the diverse ecosystem services upon which our society depends.” Through participation in a systematic process of reaching such a consensus, science can contribute more directly and effectively to the critical decisions being made both by policy makers and by natural resource and environmental management agencies. The document that follows briefly describes MARES overall and this systematic process. It then describes in considerable detail the resulting output from the first step in the process, the development of an Integrated Conceptual Ecosystem Model (ICEM) for the third subregion to be addressed by MARES, the Southeast Florida Coast (SEFC). What follows with regard to the SEFC relies upon the input received from more than 60 scientists, agency resource managers, and representatives of environmental organizations during workshops held throughout 2009–2012 in South Florida.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The overall goal of the MARine and Estuarine goal Setting (MARES) project for South Florida is “to reach a science-based consensus about the defining characteristics and fundamental regulating processes of a South Florida coastal marine ecosystem that is both sustainable and capable of providing the diverse ecosystem services upon which our society depends.” Through participation in a systematic process of reaching such a consensus, science can contribute more directly and effectively to the critical decisions being made by both policy makers and by natural resource and environmental management agencies. The document that follows briefly describes the MARES project and this systematic process. It then describes in considerable detail the resulting output from the first two steps in the process, the development of conceptual diagrams and an Integrated Conceptual Ecosystem Model (ICEM) for the second subregion to be addressed by MARES, the Southwest Florida Shelf (SWFS). What follows with regard to the SWFS is the input received from more than 60 scientists, agency resource managers, and representatives of environmental organizations beginning with a workshop held August 19-20, 2010 at Florida Gulf Coast University in Fort Myers, Florida.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NOAA’s National Status and Trends Program (NS&T) collected oyster tissue and sediments for quantification of polycyclic aromatic hydrocarbons (PAHs) and petroleum associated metals before and after the landfall of oil from the Deepwater Horizon incident of 2010. These new pre- and post- landfall measurements were put into a historical context by comparing them to data collected in the region over three decades during Mussel Watch monitoring. Overall, the levels of PAHs in both sediment and oysters both pre- and post-landfall were within the range of historically observed values for the Gulf of Mexico. Some specific sites did have elevated PAH levels. While those locations generally correspond to areas in which oil reached coastal areas, it cannot be conclusively stated that the contamination is due to oiling from the Deepwater Horizon incident at these sites due to the survey nature of these sampling efforts. Instead, our data indicate locations along the coast where intensive investigation of hydrocarbon contamination should be undertaken. Post-spill concentrations of oil-related trace metals (V, Hg, Ni) were generally within historically observed ranges for a given site, however, nickel and vanadium were elevated at some sites including areas in Mississippi Sound and Galveston, Terrebonne, Mobile, Pensacola, and Apalachicola Bays. No oyster tissue metal body burden exceeded any of the United States Food and Drug Administration’s (FDA) shellfish permissible action levels for human consumption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study was initiated with field work in May 2007 to assess the status of ecological condition and stressor impacts throughout the U.S. continental shelf off South Florida, focusing on soft-bottom habitats, and to provide this information as a baseline for evaluating future changes due to natural or human-induced disturbances. The boundaries of the study region extended from Anclote Key on the western coast of Florida to West Palm Beach on the eastern coast of Florida, inclusive of the Florida Keys National Marine Sanctuary (FKNMS), and from navigable depths along the shoreline seaward to the shelf break (~100m). The study incorporated standard methods and indicators applied in previous national coastal monitoring programs — U.S. Environmental Protection Agency’s (EPA) Environmental Monitoring and Assessment Program (EMAP) and National Coastal Assessment (NCA) — including multiple measures of water quality, sediment quality, and biological condition. Synoptic sampling of the various indicators provided an integrative weight-of-evidence approach to assessing condition at each station and a basis for examining potential associations between presence of stressors and biological responses. A probabilistic sampling design, which included 50 stations distributed randomly throughout the region, was used to provide a basis for estimating the spatial extent of condition relative to the various measured indicators and corresponding assessment endpoints (where available). The study was conducted through a large cooperative effort by National Oceanic and Atmospheric Administration (NOAA)/National Centers for Coastal Ocean Science (NCCOS), EPA, U.S. Geological Survey (USGS), NOAA/Oceanic and Atmospheric Research (OAR)/Atlantic Oceanographic and Meteorological Laboratory in Miami, FKNMS, and the Florida Fish and Wildlife Conservation Commission (FWC). The majority of the South Florida shelf had high levels of dissolved oxygen (DO) in near-bottom water (> 5 mg L-1) indicative of “good” water quality.. DO levels in bottom waters exceeded this upper threshold at 98.8% throughout the coastal-ocean survey area. Only 1.2% of the region had moderate DO levels (2-5 mg/L) and no part of the survey area had DO <2.0 mg/L. In addition, offshore waters throughout the region had relatively low levels of total suspended solids (TSS), nutrients, and chlorophyll a indicative of oligotrophic conditions. Results suggested good sediment quality as well. Sediments throughout the region, which ranged from sands to intermediate muddy sands, had low levels of total organic carbon (TOC) below bioeffect guidelines for benthic organisms. Chemical contaminants in sediments were also mostly at low, background levels. For example, none of the stations had chemicals in excess of corresponding Effects-Range Median (ERM) probable bioeffect values or more than one chemical in excess of lower-threshold Effects-Range Low (ERL) values. Cadmium was the only chemical that occurred at moderate concentrations between corresponding ERL and ERM values. Sixty fish samples from 28 stations were collected and analyzed for chemical contaminants. Eleven of these samples (39% of sites) had moderate levels of contaminants, between lower and upper non-cancer human-health thresholds, and ten (36% of sites) had high levels of contaminants above the upper threshold.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Digital maps of the coral reef ecosystem (<~30m deep) of Majuro Atoll, Republic of the Marshall Islands, were created through visual interpretation of remote sensing imagery. Digital Globe’s Quickbird II satellite images were acquired between 2004 and 2006 and georeferenced to within 1.6 m of their true positions. Reef ecosystem features were digitized directly into a GIS at a display scale of 1:4000 using a minimum feature size of 1000 square meters. Benthic features were categorized according to a classification scheme with attributes including zone (location, such as lagoon or forereef, etc.), structure (bottom type, such as sand or patch reef, etc.) and percent hard bottom. Ground validation of habitat features was conducted at 311 sites in 2009. Resulting maps consisted of 1829 features covering 366 square kilometers. Results demonstrate that reef zones occurred in a typical progression of narrow bands from offshore, though forereef, reef flat, shoreline, land, backreef, and lagoon habitats. Lagoon was the largest zone mapped and covered nearly 80% of the atoll, although much of it was too deep to have structures identified from the satellite imagery. Dominant habitat structures by area were pavement and aggregate reef, which covered 29% and 18% of the mapped structures, respectively. Based on the number of features, individual and aggregated patch reefs comprised over 40% of the features mapped. Products include GIS based maps, field videos and pictures, satellite imagery, PDF atlas, and this summary report. Maps and associated data can be used to support science and management activities on Majuro reef ecosystems including inventory, monitoring, conservation, and sustainable development applications.