872 resultados para Cloud Condensation Nucleus
Resumo:
Background Long-term changes in synaptic plasticity require gene transcription, indicating that signals generated at the synapse must be transported to the nucleus. Synaptic activation of hippocampal neurons is known to trigger retrograde transport of transcription factor NF-κB. Transcription factors of the NF-κB family are widely expressed in the nervous system and regulate expression of several genes involved in neuroplasticity, cell survival, learning and memory. Principal Findings In this study, we examine the role of the dynein/dynactin motor complex in the cellular mechanism targeting and transporting activated NF-κB to the nucleus in response to synaptic stimulation. We demonstrate that overexpression of dynamitin, which is known to dissociate dynein from microtubules, and treatment with microtubule-disrupting drugs inhibits nuclear accumulation of NF-κB p65 and reduces NF-κB-dependent transcription activity. In this line, we show that p65 is associated with components of the dynein/dynactin complex in vivo and in vitro and that the nuclear localization sequence (NLS) within NF-κB p65 is essential for this binding. Conclusion This study shows the molecular mechanism for the retrograde transport of activated NF-κB from distant synaptic sites towards the nucleus.
Resumo:
Ground-based remote-sensing observations from Atmospheric Radiation Measurement (ARM) and Cloud-Net sites are used to evaluate the clouds predicted by a weather forecasting and climate model. By evaluating the cloud predictions using separate measures for the errors in frequency of occurrence, amount when present, and timing, we provide a detailed assessment of the model performance, which is relevant to weather and climate time-scales. Importantly, this methodology will be of great use when attempting to develop a cloud parametrization scheme, as it provides a clearer picture of the current deficiencies in the predicted clouds. Using the Met Office Unified Model, it is shown that when cloud fractions produced by a diagnostic and a prognostic cloud scheme are compared, the prognostic cloud scheme shows improvements to the biases in frequency of occurrence of low, medium and high cloud and to the frequency distributions of cloud amount when cloud is present. The mean cloud profiles are generally improved, although it is shown that in some cases the diagnostic scheme produced misleadingly good mean profiles as a result of compensating errors in frequency of occurrence and amount when present. Some biases remain when using the prognostic scheme, notably the underprediction of mean ice cloud fraction due to the amount when present being too low, and the overprediction of mean liquid cloud fraction due to the frequency of occurrence being too high.
Resumo:
The extensive use of cloud computing in educational institutes around the world brings unique challenges for universities. Some of these challenges are due to clear differences between Europe and Middle East universities. These differences stem from the natural variation between people. Cloud computing has created a new concept to deal with software services and hardware infrastructure. Some benefits are immediately gained, for instance, to allow students to share their information easily and to discover new experiences of the education system. However, this introduces more challenges, such as security and configuration of resources in shared environments. Educational institutes cannot escape from these challenges. Yet some differences occur between universities which use cloud computing as an educational tool or a form of social connection. This paper discusses some benefits and limitations of using cloud computing and major differences in using cloud computing at universities in Europe and the Middle East, based on the social perspective, security and economics concepts, and personal responsibility.
Resumo:
Massive economic and population growth, and urbanization are expected to lead to a tripling of anthropogenic emissions in southern West Africa (SWA) between 2000 and 2030. However, the impacts of this on human health, ecosystems, food security, and the regional climate are largely unknown. An integrated assessment is challenging due to (a) a superposition of regional effects with global climate change, (b) a strong dependence on the variable West African monsoon, (c) incomplete scientific understanding of interactions between emissions, clouds, radiation, precipitation, and regional circulations, and (d) a lack of observations. This article provides an overview of the DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa) project. DACCIWA will conduct extensive fieldwork in SWA to collect high-quality observations, spanning the entire process chain from surface-based natural and anthropogenic emissions to impacts on health, ecosystems, and climate. Combining the resulting benchmark dataset with a wide range of modeling activities will allow (a) assessment of relevant physical, chemical, and biological processes, (b) improvement of the monitoring of climate and atmospheric composition from space, and (c) development of the next generation of weather and climate models capable of representing coupled cloud-aerosol interactions. The latter will ultimately contribute to reduce uncertainties in climate predictions. DACCIWA collaborates closely with operational centers, international programs, policy-makers, and users to actively guide sustainable future planning for West Africa. It is hoped that some of DACCIWA’s scientific findings and technical developments will be applicable to other monsoon regions.
Resumo:
Liquid layer clouds are abundant globally. Lacking strong convection, they do not become electrified by the usual thunderstorm mechanisms of collisional electrification between hydrometeors of different phases. Instead, the background global circuit current flow in fair weather is largely unaffected by the layer cloud’s presence, and, if the layer cloud is extensive horizontally, the vertical fair weather conduction current passes through the cloud. A consequence of the vertical current flow is that, at the cloud-air boundary where there is a conductivity transition and droplets form or evaporate, droplet charging occurs. Charge can affect both droplet evaporation and droplet-droplet collisions. Using new radiosonde instrumentation, the charge observed at layer cloud edges is evaluated for both these microphysical droplet processes. This shows that the charging is more likely to affect collision processes than activation, for small droplets. Enhancing the collection efficiency of small droplets modifies their evolution and propagates through the size distribution to shorten the autoconversion timescale to rain drops, and the cloud radiative properties. Because the conduction current density is influenced by both external (e.g. solar modulation of high energy particles) and internal (e.g. ENSO) factors, current flow leading to layer cloud edge charging provides a possible route for expressing solar influences on the climate system and a teleconnection mechanism for communicating internal climate variability.
Resumo:
A new coupled cloud physics–radiation parameterization of the bulk optical properties of ice clouds is presented. The parameterization is consistent with assumptions in the cloud physics scheme regarding particle size distributions (PSDs) and mass–dimensional relationships. The parameterization is based on a weighted ice crystal habit mixture model, and its bulk optical properties are parameterized as simple functions of wavelength and ice water content (IWC). This approach directly couples IWC to the bulk optical properties, negating the need for diagnosed variables, such as the ice crystal effective dimension. The parameterization is implemented into the Met Office Unified Model Global Atmosphere 5.0 (GA5) configuration. The GA5 configuration is used to simulate the annual 20-yr shortwave (SW) and longwave (LW) fluxes at the top of the atmosphere (TOA), as well as the temperature structure of the atmosphere, under various microphysical assumptions. The coupled parameterization is directly compared against the current operational radiation parameterization, while maintaining the same cloud physics assumptions. In this experiment, the impacts of the two parameterizations on the SW and LW radiative effects at TOA are also investigated and compared against observations. The 20-yr simulations are compared against the latest observations of the atmospheric temperature and radiative fluxes at TOA. The comparisons demonstrate that the choice of PSD and the assumed ice crystal shape distribution are as important as each other. Moreover, the consistent radiation parameterization removes a long-standing tropical troposphere cold temperature bias but slightly warms the southern midlatitudes by about 0.5 K.
Resumo:
The subgrid-scale spatial variability in cloud water content can be described by a parameter f called the fractional standard deviation. This is equal to the standard deviation of the cloud water content divided by the mean. This parameter is an input to schemes that calculate the impact of subgrid-scale cloud inhomogeneity on gridbox-mean radiative fluxes and microphysical process rates. A new regime-dependent parametrization of the spatial variability of cloud water content is derived from CloudSat observations of ice clouds. In addition to the dependencies on horizontal and vertical resolution and cloud fraction included in previous parametrizations, the new parametrization includes an explicit dependence on cloud type. The new parametrization is then implemented in the Global Atmosphere 6 (GA6) configuration of the Met Office Unified Model and used to model the effects of subgrid variability of both ice and liquid water content on radiative fluxes and autoconversion and accretion rates in three 20-year atmosphere-only climate simulations. These simulations show the impact of the new regime-dependent parametrization on diagnostic radiation calculations, interactive radiation calculations and both interactive radiation calculations and in a new warm microphysics scheme. The control simulation uses a globally constant f value of 0.75 to model the effect of cloud water content variability on radiative fluxes. The use of the new regime-dependent parametrization in the model results in a global mean which is higher than the control's fixed value and a global distribution of f which is closer to CloudSat observations. When the new regime-dependent parametrization is used in radiative transfer calculations only, the magnitudes of short-wave and long-wave top of atmosphere cloud radiative forcing are reduced, increasing the existing global mean biases in the control. When also applied in a new warm microphysics scheme, the short-wave global mean bias is reduced.
Resumo:
Spatial variability of liquid cloud water content and rainwater content is analysed from three different observational platforms: in situ measurements from research aircraft, land-based remote sensing techniques using radar and lidar, and spaceborne remote sensing from CloudSat. The variance is found to increase with spatial scale, but also depends strongly on the cloud or rain fraction regime, with overcast regions containing less variability than broken cloud fields. This variability is shown to lead to large biases, up to a factor of 4, in both the autoconversion and accretion rates estimated at a model grid scale of ≈40 km by a typical microphysical parametrization using in-cloud mean values. A parametrization for the subgrid variability of liquid cloud and rainwater content is developed, based on the observations, which varies with both the grid scale and cloud or rain fraction, and is applicable for all model grid scales. It is then shown that if this parametrization of the variability is analytically incorporated into the autoconversion and accretion rate calculations, the bias is significantly reduced.
Resumo:
Weather and climate model simulations of the West African Monsoon (WAM) have generally poor representation of the rainfall distribution and monsoon circulation because key processes, such as clouds and convection, are poorly characterized. The vertical distribution of cloud and precipitation during the WAM are evaluated in Met Office Unified Model simulations against CloudSat observations. Simulations were run at 40-km and 12-km horizontal grid length using a convection parameterization scheme and at 12-km, 4-km, and 1.5-km grid length with the convection scheme effectively switched off, to study the impact of model resolution and convection parameterization scheme on the organisation of tropical convection. Radar reflectivity is forward-modelled from the model cloud fields using the CloudSat simulator to present a like-with-like comparison with the CloudSat radar observations. The representation of cloud and precipitation at 12-km horizontal grid length improves dramatically when the convection parameterization is switched off, primarily because of a reduction in daytime (moist) convection. Further improvement is obtained when reducing model grid length to 4 km or 1.5 km, especially in the representation of thin anvil and mid-level cloud, but three issues remain in all model configurations. Firstly, all simulations underestimate the fraction of anvils with cloud top height above 12 km, which can be attributed to too low ice water contents in the model compared to satellite retrievals. Secondly, the model consistently detrains mid-level cloud too close to the freezing level, compared to higher altitudes in CloudSat observations. Finally, there is too much low-level cloud cover in all simulations and this bias was not improved when adjusting the rainfall parameters in the microphysics scheme. To improve model simulations of the WAM, more detailed and in-situ observations of the dynamics and microphysics targeting these non-precipitating cloud types are required.
Resumo:
Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer clouds using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances under conditions when precipitation does not reach the surface. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievals using synthetic measurements from large-eddy simulation snapshots of cumulus under stratocumulus, where cloud water path is retrieved with an error of 31 g m−2 . The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the Northeast Pacific. Here, retrieved cloud water path agrees well with independent three-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m−2.
Resumo:
Clouds and associated precipitation are the largest source of uncertainty in current weather and future climate simulations. Observations of the microphysical, dynamical and radiative processes that act at cloud scales are needed to improve our understanding of clouds. The rapid expansion of ground-based super-sites and the availability of continuous profiling and scanning multi-frequency radar observations at 35 and 94 GHz have significantly improved our ability to probe the internal structure of clouds in high temporal-spatial resolution, and to retrieve quantitative cloud and precipitation properties. However, there are still gaps in our ability to probe clouds due to large uncertainties in the retrievals. The present work discusses the potential of G band (frequency between 110 and 300 GHz) Doppler radars in combination with lower frequencies to further improve the retrievals of microphysical properties. Our results show that, thanks to a larger dynamic range in dual-wavelength reflectivity, dual-wavelength attenuation and dual-wavelength Doppler velocity (with respect to a Rayleigh reference), the inclusion of frequencies in the G band can significantly improve current profiling capabilities in three key areas: boundary layer clouds, cirrus and mid-level ice clouds, and precipitating snow.
Resumo:
The Jülich Observatory for Cloud Evolution (JOYCE), located at Forschungszentrum Jülich in the most western part of Germany, is a recently established platform for cloud research. The main objective of JOYCE is to provide observations, which improve our understanding of the cloudy boundary layer in a midlatitude environment. Continuous and temporally highly resolved measurements that are specifically suited to characterize the diurnal cycle of water vapor, stability, and turbulence in the lower troposphere are performed with a special focus on atmosphere–surface interaction. In addition, instruments are set up to measure the micro- and macrophysical properties of clouds in detail and how they interact with different boundary layer processes and the large-scale synoptic situation. For this, JOYCE is equipped with an array of state-of-the-art active and passive remote sensing and in situ instruments, which are briefly described in this scientific overview. As an example, a 24-h time series of the evolution of a typical cumulus cloud-topped boundary layer is analyzed with respect to stability, turbulence, and cloud properties. Additionally, we present longer-term statistics, which can be used to elucidate the diurnal cycle of water vapor, drizzle formation through autoconversion, and warm versus cold rain precipitation formation. Both case studies and long-term observations are important for improving the representation of clouds in climate and numerical weather prediction models.
Resumo:
Increases in cloud optical depth and liquid water path (LWP) are robust features of global warming model simulations in high latitudes, yielding a negative shortwave cloud feedback, but the mechanisms are still uncertain. We assess the importance of microphysical processes for the negative optical depth feedback by perturbing temperature in the microphysics schemes of two aquaplanet models, both of which have separate prognostic equations for liquid water and ice. We find that most of the LWP increase with warming is caused by a suppression of ice microphysical processes in mixed-phase clouds, resulting in reduced conversion efficiencies of liquid water to ice and precipitation. Perturbing the temperature-dependent phase partitioning of convective condensate also yields a small LWP increase. Together, the perturbations in large-scale microphysics and convective condensate partitioning explain more than two-thirds of the LWP response relative to a reference case with increased SSTs, and capture all of the vertical structure of the liquid water response. In support of these findings, we show the existence of a very robust positive relationship between monthly-mean LWP and temperature in CMIP5 models and observations in mixed-phase cloud regions only. In models, the historical LWP sensitivity to temperature is a good predictor of the forced global warming response poleward of about 45°, although models appear to overestimate the LWP response to warming compared to observations. We conclude that in climate models, the suppression of ice-phase microphysical processes that deplete cloud liquid water is a key driver of the LWP increase with warming and of the associated negative shortwave cloud feedback.
Resumo:
Substantial biases in shortwave cloud forcing (SWCF) of up to ±30 W m−2are found in the midlatitudes of the Southern Hemisphere in the historical simulations of 34 CMIP5 coupled general circulation models. The SWCF biases are shown to induce surface temperature anomalies localized in the midlatitudes, and are significantly correlated with the mean latitude of the eddy-driven jet, with a negative SWCF bias corresponding to an equatorward jet latitude bias. Aquaplanet model experiments are performed to demonstrate that the jet latitude biases are primarily induced by the midlatitude SWCF anomalies, such that the jet moves toward (away from) regions of enhanced (reduced) temperature gradients. The results underline the necessity of accurately representing cloud radiative forcings in state-of-the-art coupled models.
Resumo:
Increasing optical depth poleward of 45° is a robust response to warming in global climate models. Much of this cloud optical depth increase has been hypothesized to be due to transitions from ice-dominated to liquid-dominated mixed-phase cloud. In this study, the importance of liquid-ice partitioning for the optical depth feedback is quantified for 19 Coupled Model Intercomparison Project Phase 5 models. All models show a monotonic partitioning of ice and liquid as a function of temperature, but the temperature at which ice and liquid are equally mixed (the glaciation temperature) varies by as much as 40 K across models. Models that have a higher glaciation temperature are found to have a smaller climatological liquid water path (LWP) and condensed water path and experience a larger increase in LWP as the climate warms. The ice-liquid partitioning curve of each model may be used to calculate the response of LWP to warming. It is found that the repartitioning between ice and liquid in a warming climate contributes at least 20% to 80% of the increase in LWP as the climate warms, depending on model. Intermodel differences in the climatological partitioning between ice and liquid are estimated to contribute at least 20% to the intermodel spread in the high-latitude LWP response in the mixed-phase region poleward of 45°S. It is hypothesized that a more thorough evaluation and constraint of global climate model mixed-phase cloud parameterizations and validation of the total condensate and ice-liquid apportionment against observations will yield a substantial reduction in model uncertainty in the high-latitude cloud response to warming.