911 resultados para Cixi, Empress dowager of China, 1835-1908.
Resumo:
We present a novel technique to fabricate deeply embedded microelectrodes in LiNbO3 using femtosecond pulsed laser ablation and selective electroless plating. The fabrication process mainly consists of four steps, which are (1) micromachining of microgrooves on the surface of LiNbO3 by femtosecond laser ablation; (2) formation of AgNO3 films on substrates; (3) scanning the femtosecond laser beam in the fabricated microgrooves for modi. cation of the inner surfaces; and (4) electroless copper plating. The void-free electroless copper plating is obtained with appropriate cross section of microgrooves and uniform initiation of the autocatalytic deposition on the inner surface of grooves. The dimension and shape of the microelectrodes could be accurately controlled by changing the conditions of femtosecond laser ablation, which in turn can control the distribution of electric field inside LiNbO3 crystal for various applications, opening up a new approach to fabricate three-dimensional integrated electro-optic devices. (C) 2008 Elsevier B. V. All rights reserved.
Formation of X-waves at fundamental and harmonics by infrared femtosecond pulse filamentation in air
Resumo:
We experimentally observe the formation of X-waves at fundamental, third harmonic, and fifth harmonic wavelengths by infrared (central wavelength at similar to 1500 nm) femtosecond laser pulse filamentation in air. By fitting the angularly resolved spectra of the fundamental and harmonic waves using X-wave relations, we confirm that all the X-waves have nearly the same group velocity, indicating that they are locked in space and time during their propagation in filament.
Resumo:
A novel scheme to eliminate the artificial background phase jitter is proposed for measuring the carrier-envelope phase drift of tunable infrared femtosecond pulses from an OPA laser. Different from previous methods, a reference spectral interference measurement is performed, which reveals the artificial phase jitter in the measurement process, in addition to the normal f-to-2f interference measurement between the incident laser pulses and it second harmonic. By analyzing the interference fringes, the accurate CEP fluctuation of the incident pulses is obtained. (c) 2008 Optical Society of America
Resumo:
Confinement of electromagnetic energy into a single well-controlled oscillation of light is very important for generation of intense supercontinuum radiation. We find that the pulse breakup of few-cycle ultrashort laser pulses via resonant propagation effects can achieve this aim. By extracting such pulses and then focusing them to drive the He atoms, about 200 eV intense supercontinuum radiation can be generated, which is capable of supporting similar to 20 attosecond isolated pulse generation.
Resumo:
Ion acceleration by ultrashort circularly polarized laser pulse in a solid-density target is investigated using two-dimensional particle-in-cell simulation. The ions are accelerated and compressed by the continuously extending space-charge field created by the evacuation and compression of the target electrons by the laser light pressure. For a sufficiently thin target, the accelerated and compressed ions can reach and exit from the rear surface as a high-density high-energy ion bunch. The peak ion energy depends on the target thickness and reaches maximum when the compressed ion layer can just reach the rear target surface. The compressed ion layer exhibits lateral striation which can be suppressed by using a sharp-rising laser pulse. (c) 2008 American Institute of Physics.
Resumo:
Ultrashort light-matter interactions between a linear chirped pulse and a biased semiconductor thin film GaAs are investigated. Using different chirped pulses, the dependence of infrared spectra on chirp rate is demonstrated for a 5 fs pulse. It is found that the infrared spectra can be controlled by the linear chirp of the pulse. Furthermore, the infrared spectral intensity could be enhanced by two orders of magnitude via appropriately choosing values of the linear chirp rates. Our results suggest a possible scheme to control the infrared signal.
Resumo:
Using conventional methods, a laser pulse can be focused down to around 6-8 mu m, but further reduction of the spot size has proven to be difficult. Here it is shown by particle-in-cell simulation that with a hollow cone an intense laser pulse can be reduced to a tiny, highly localized, spot of around 1 mu m radius, accompanied by much enhanced light intensity. The pulse shaping and focusing effect is due to a nonlinear laser-plasma interaction on the inner surface of the cone. When a thin foil is attached to the tip of the cone, the cone-focused light pulse compresses and accelerates the ions in its path and can punch through the thin target, creating highly localized energetic ion bunches of high density.
Resumo:
The spatiotemporal evolutions of ultrashort pulses in two dimensions are investigated numerically by solving the coupled Maxwell-Bloch equations without invoking the slowly varying envelope approximation and rotating-wave approximation. For an on-axis 2n pi sech pulse, local delay makes the temporal split 2 pi sech pulses crescent-shaped in the transverse distribution. Due to the transverse effect, the temporal split 2 pi sech pulses become unstable and experience reshaping during the propagation process. Then, interference occurs between the successive crescent-shaped pulses and multiple self-focusing can form.
Resumo:
We investigate the effect of the electric field maximum on the Rabi flopping and the generated higher frequency spectra properties by solving Maxwell-Bloch equations without invoking any standard approximations. It is found that the maximum of the electric field will lead to carrier-wave Rabi flopping (CWRF) through reversion dynamics which will be more evident when the applied field enters the sub-one-cycle regime. Therefore, under the interaction of sub-one-cycle pulses, the Rabi flopping follows the transient electric field tightly through the oscillation and reversion dynamics, which is in contrast to the conventional envelope Rabi flopping. Complete or incomplete population inversion can be realized through the control of the carrier-envelope phase (CEP). Furthermore, the generated higher frequency spectra will be changed from distinct to continuous or irregular with the variation of the CEP. Our results demonstrate that due to the evident maximum behavior of the electric field, pulses with different CEP give rise to different CWRFs, and then different degree of interferences lead to different higher frequency spectral features.
Resumo:
Trichromatic manipulation of Kerr nonlinearity in a three-level A atomic configuration is investigated theoretically. It is shown that for a weak monochromatic probe field, the enhanced Kerr nonlinearity can be achieved in multiple separate transparent windows due to interference effect of multiple two-photon Raman channels. Furthermore, the property of Kerr nonlinearity can be controlled by the sum of the relative phases of the sideband components of the trichromatic pump field compared to the central component.
Resumo:
A pulse-compression scheme based on cascade of filamentation and hollow fiber has been demonstrated, Pulses with duration of sub-5 fs and energy of 0.2 mJ near 800 nm have been generated by compressing the similar to 40 fs pulses from a commercial laser system. This method is promising to generate near monocycle high energy pulses. [GRAPHICS] Measured autocorrelation curve of the final compressed pulses with duration of sub-5 fs (black solid) and the simulated autocorrelation curve of 4.6 fs pulse near 800 rim (red dash) (C) 2008 by Astro Ltd. Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA
Resumo:
We demonstrated optical amplification at 1550 nm with a carbon tetrachloride solution of Er3+-Yb3+ codoped NaYF4 nanocubes synthesized with solvo-thermal route. Upon excitation with a 980 nm laser diode, the nanocube solution exhibited strong near-infrared emission by the I-4(13/2) -> I-4(15/2) transition of Er3+ ions due to energy transfer from Yb3+ ions. We obtained the highest optical gain coefficient at 1550 nm of 0.58 cm(-1) for the solution with the pumping power of 200 mW. This colloidal solution might be a promising candidate as a liquid medium for optical amplifier and laser at the optical communication wavelength. (C) 2009 Optical Society of America
Resumo:
We report micromodification of Eu element distribution in a silicate glass with femtosecond laser irradiation. Elemental analysis shows that the content of Eu decreased at the focal point and increased in a ring-shaped region around the focal point, which indicates migration of Eu ions has been induced by the femtosecond laser irradiation. Confocal fluorescence spectra demonstrate that the fluorescence intensity of Eu3+ ions increased by 20% in the laser-induced, Eu-enriched, ring-shaped region compared with that for nonirradiated glass. The mechanism for the laser induced change in fluorescence properties of Eu3+ has been investigated. (C) 2009 Optical Society of America
Resumo:
We investigate the higher spectral component generations driven by a few-cycle laser pulse in a dense medium when a static electric field is present. Our results show that, when assisted by a static electric field, the dependence of the transmitted laser spectrum on the carrier-envelope phase (CEP) is significantly increased. Continuum and distinct peaks can be achieved by controlling the CEP of the few-cycle ultrashort laser pulse. Such a strong variation is due to the fact that the presence of the static electric field modifies the waveform of the combined electric field, which further affects the spectral distribution of the generated higher spectral components.
Resumo:
The fluorescence emission from indole resulting from two-color two-photon (2C2P) excitation with 400 and 800 nm wavelengths is observed, using the second harmonic and fundamental wavelength of a 800 nm 40 fs pulsed Ti:Sapphire femtosecond (fs) regenerative amplifier operating at a repetition rate of 1 kHz. By delaying one fs laser pulse relative to the other, the cross correlation of fluorescence is observed, which indicates the generation of 2C2P fluorescence signal in the experiment. The strongest 2C2P fluorescence emission characterized by the peak of cross correlation curve suggests optimal temporal overlap of the two fs laser pulses. The 2C2P fluorescence signal is linearly dependent on the total excitation intensity. The fluorescence signals with 400 nm and 800 nm irradiation alone are also demonstrated and discussed in this paper. (C) 2008 Elsevier B.V. All rights reserved.