999 resultados para Chemical sputtering
Resumo:
Establishing fabrication methods of carbon nanotubes (CNTs) is essential to realize many applications expected for CNTs. Catalytic growth of CNTs on substrates by chemical vapor deposition (CVD) is promising for direct fabrication of CNT devices, and catalyst nanoparticles play a crucial role in such growth. We have developed a simple method called "combinatorial masked deposition (CMD)", in which catalyst particles of a given series of sizes and compositions are formed on a single substrate by annealing gradient catalyst layers formed by sputtering through a mask. CMD enables preparation of hundreds of catalysts on a wafer, growth of single-walled CNTs (SWCNTs), and evaluation of SWCNT diameter distributions by automated Raman mapping in a single day. CMD helps determinations of the CVD and catalyst windows realizing millimeter-tall SWCNT forest growth in 10 min, and of growth curves for a series of catalysts in a single measurement when combined with realtime monitoring. A catalyst library prepared using CMD yields various CNTs, ranging from individuals, networks, spikes, and to forests of both SWCNTs and multi-walled CNTs, and thus can be used to efficiently evaluate self-organized CNT field emitters, for example. The CMD method is simple yet effective for research of CNT growth methods. © 2010 The Japan Society of Applied Physics.
Resumo:
Vertically-aligned carbon nanotubes (VA-CNTs) were rapidly grown from ethanol and their chemistry has been studied using a "cold-gas" chemical vapor deposition (CVD) method. Ethanol vapor was preheated in a furnace, cooled down and then flowed over cobalt catalysts upon ribbon-shaped substrates at 800 °C, while keeping the gas unheated. CNTs were obtained from ethanol on a sub-micrometer scale without preheating, but on a millimeter scale with preheating at 1000 °C. Acetylene was predicted to be the direct precursor by gas chromatography and gas-phase kinetic simulation, and actually led to millimeter-tall VA-CNTs without preheating when fed with hydrogen and water. There was, however a difference in CNT structure, i.e. mainly few-wall tubes from pyrolyzed ethanol and mainly single-wall tubes for unheated acetylene, and the by-products from ethanol pyrolysis possibly caused this difference. The "cold-gas" CVD, in which the gas-phase and catalytic reactions are separately controlled, allowed us to further understand CNT growth. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Aluminum nitride (AlN) piezoelectric thin films with c-axis crystal orientation on polymer substrates can potentially be used for development of flexible electronics and lab-on-chip systems. In this study, we investigated the effects of deposition parameters on the crystal structure of AlN thin films on polymer substrates deposited by reactive direct-current magnetron sputtering. The results show that low sputtering pressure as well as optimized N 2/Ar flow ratio and sputtering power is beneficial for AlN (002) orientation and can produce a highly (002) oriented columnar structure on polymer substrates. High sputtering power and low N 2/Ar flow ratio increase the deposition rate. In addition, the thickness of Al underlayer also has a strong influence on the film crystallography. The optimal deposition parameters in our experiments are: deposition pressure 0.38 Pa, N 2/Ar flow ratio 2:3, sputtering power 414 W, and thickness of Al underlayer less than 100 nm. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Large area uniform nanocrystalline graphene is grown by chemical vapor deposition on arbitrary insulating substrates that can survive ∼1000°C. The as-synthesized graphene is nanocrystalline with a domain size in the order of ∼10 nm. The material possesses a transparency and conductivity similar to standard graphene fabricated by exfoliation or catalysis. A noncatalytic mechanism is proposed to explain the experimental phenomena. The developed technique is scalable and reproducible, compatible with the existing semiconductor technology, and thus can be very useful in nanoelectronic applications such as transparent electronics, nanoelectromechanical systems, as well as molecular electronics. © 2012 IEEE.
Resumo:
A noncatalytic chemical vapor deposition mechanism is proposed, where high precursor concentration, long deposition time, high temperature, and flat substrate are needed to grow large-area nanocrystalline graphene using hydrocarbon pyrolysis. The graphene is scalable, uniform, and with controlled thickness. It can be deposited on virtually any nonmetallic substrate that withstands ∼1000 °C. For typical examples, graphene grown directly on quartz and sapphire shows transmittance and conductivity similar to exfoliated or metal-catalyzed graphene, as evidenced by transmission spectroscopy and transport measurements. Raman spectroscopy confirms the sp 2-C structure. The model and results demonstrate a promising transfer-free technique for transparent electrode production. © 2012 American Institute of Physics.