928 resultados para Cell vertex finite volume method
Resumo:
Laminar magnetohydrodynamic (MHD) natural convection flow from an isothermal sphere immersed in a fluid with viscosity proportional to linear function of temperature has been studied. The governing boundary layer equations are transformed into a non-dimensional form and the resulting nonlinear system of partial differential equations are reduced to convenient form which are solved numerically by two very efficient methods, namely, (i) Implicit finite difference method together with Keller box scheme and (ii) Direct numerical scheme. Numerical results are presented by velocity and temperature distribution, streamlines and isotherms of the fluid as well as heat transfer characteristics, namely the local skin-friction coefficients and the local heat transfer rate for a wide range of magnetohydrodynamic paramagnet and viscosity-variation parameter.
Resumo:
We present here a numerical study of laminar doubly diffusive free convection flows adjacent to a vertical surface in a stable thermally stratified medium. The governing equations of mass, momentum, energy and species are non-dimensionalized. These equations have been solved by using an implicit finite difference method and local non-similarity method. The results show many interesting aspects of complex interaction of the two buoyant mechanisms that have been shown in both the tabular as well as graphical form.
Resumo:
In this paper, laminar natural convection flow from a permeable and isothermal vertical surface placed in non-isothermal surroundings is considered. Introducing appropriate transformations into the boundary layer equations governing the flow derives non-similar boundary layer equations. Results of both the analytical and numerical solutions are then presented in the form of skin-friction and Nusselt number. Numerical solutions of the transformed non-similar boundary layer equations are obtained by three distinct solution methods, (i) the perturbation solutions for small � (ii) the asymptotic solution for large � (iii) the implicit finite difference method for all � where � is the transpiration parameter. Perturbation solutions for small and large values of � are compared with the finite difference solutions for different values of pertinent parameters, namely, the Prandtl number Pr, and the ambient temperature gradient n.
Resumo:
The effect of viscous dissipation on natural convection from a vertical plate placed in a thermally stratified environment has been investigated numerically. The reduced equations are integrated by employing the implicit finite difference scheme or Ke1ler-box method and obtained the effect of heat due to viscous dissipation on the local skin-friction and loca1 Nusselt number at various stratification levels, for fluids having Prandtl number equals 10, 50, and 100. Solutions are also obtained using the perturbation technique for small values of viscous dissipation parameters and compared with the Finite Difference solutions. Effect of the heat transfer due to viscous dissipation and the temperature stratification are also shown on the velocity and temperature distributions in the boundary layer region. A numerical study of laminar doubly diffusive free convection flows adjacent to a vertical surface in a stable thermally stratified medium is also considered for this study. Solutions are obtained using the implicit Finite Difference method and compared with the local non-similarity method. The velocity and temperature distributions for different values of stratification parameter are shown graphically. The results show many interesting aspects of complex interaction of the two buoyant mechanisms.
Resumo:
Plate elements are used in many engineering applications. In-plane loads and deformations have significant influence on the vibration characteristics of plate elements. Numerous methods have been developed to quantify the effects of in-plane loads and deformations of individual plate elements with different boundary conditions based on their natural frequencies. However, these developments cannot be applied to the plate elements in a structural system as the natural frequency is a global parameter for the entire structure. This highlights the need for a method to quantify in-plane deformations of plate elements in structural framing systems. Motivated by this gap in knowledge, this research has developed a comprehensive vibration based procedure to quantify in-plane deformation of plate elements in a structural framing system. This procedure with its unique capabilities to capture the influence of load migration, boundary conditions and different tributary areas is presented herein and illustrated through examples.
Resumo:
Natural convection flow from an isothermal vertical plate with uniform heat source embedded in a stratified medium has been discussed in this paper. The resulting momentum and energy equations of boundary layer approximation are made non-similar by introducing the usual non-similarity transformations. Numerical solutions of these equations are obtained by an implicit finite difference method for a wide range of the stratification parameter, X. The solutions are also obtained for different values of pertinent parameters, namely, the Prandtl number, Pr and the heat generation or absorption parameter, λ and are expressed in terms of the local skin-friction and local heat transfer, which are shown in the graphical form. Effect of heat generation or absorption on the streamlines and isotherms are also shown graphically for different values of λ.
Resumo:
Natural convection of a two-dimensional laminar steady-state incompressible fluid flow in a modified rectangular enclosure with sinusoidal corrugated top surface has been investigated numerically. The present study has been carried out for different corrugation frequencies on the top surface as well as aspect ratios of the enclosure in order to observe the change in hydrodynamic and thermal behavior with constant corrugation amplitude. A constant flux heat source is flush mounted on the top sinusoidal wall, modeling a wavy sheet shaded room exposed to sunlight. The flat bottom surface is considered as adiabatic, while the both vertical side walls are maintained at the constant ambient temperature. The fluid considered inside the enclosure is air having Prandtl number of 0.71. The numerical scheme is based on the finite element method adapted to triangular non-uniform mesh element by a non-linear parametric solution algorithm. The results in terms of isotherms, streamlines and average Nusselt numbers are obtained for the Rayleigh number ranging from 10^3 to 10^6 with constant physical properties for the fluid medium considered. It is found that the convective phenomena are greatly influenced by the presence of the corrugation and variation of aspect ratios.
Resumo:
Unsteady natural convection inside a triangular cavity has been studied in this study. The cavity is filled with a saturated porous medium with non-isothermal left inclined wall while the bottom surface is isothermally heated and the right inclined surface is isothermally cold. An internal heat generation is also considered which is dependent of the fluid temperature. The governing equations are solved numerically by finite element method. The Prandtl number of the fluid is considered as 0.7 (air) while the aspect ratio and the Rayleigh number are considered as 0.5 and 105 respectively. The effect of the porosity of the medium and heat generation on the fluid flow and heat transfer have been presented as a form of streamlines and isotherms. The rate of heat transfer through three surfaces of the enclosure is also presented.
Resumo:
Mixed convection of a two-dimensional laminar incompressible flow along a horizontal flat plate with streamwise sinusoidal surface temperature has been numerically investigated for different values of Rayleigh number and Reynolds number for constant values of Prandtl number, amplitude and frequency of periodic temperature. The numerical scheme is based on the finite element method adapted to rectangular non-uniform mesh elements by a non-linear parametric solution algorithm. The fluid considered in this study is air. The results are obtained for the Rayleigh number and Reynolds number ranging from 102 to 104 and 1 to 100, respectively, with constant physical properties for the fluid medium considered. Velocity and temperature profiles, streamlines, isotherms, and average Nusselt numbers are presented to observe the effect of the investigating parameters on fluid flow and heat transfer characteristics. The present results show that the convective phenomena are greatly influenced by the variation of Rayleigh numbers and Reynolds number.
Resumo:
Unsteady natural convection due to differentially heating of the sinusoidal corrugated side walls of a modified square enclosure has been numerically investigated. The fluid inside the enclosure is air, initially as quiescent. The flat top and bottom surfaces are considered as adiabatic. The numerical scheme is based on the finite element method adapted to triangular non-uniform mesh element by a non-linear parametric solution algorithm. The results are obtained for the Rayleigh number, Ra ranging from 1e+05 to 1e+08 for different corrugation amplitude and frequency with constant physical properties for the fluid medium considered. The streamlines, isotherms and average Nusselt numbers are presented to observe the effect of sudden heating and its consequent transient behavior on fluid flow and heat transfer characteristics for the range of governing parameters. The present results show that the transient phenomena are greatly influenced by the variation of the aforementioned parameters.
Resumo:
This thesis presents a mathematical model of the evaporation of colloidal sol droplets suspended within an atmosphere consisting of water vapour and air. The main purpose of this work is to investigate the causes of the morphologies arising within the powder collected from a spray dryer into which the precursor sol for Synroc™ is sprayed. The morphology is of significant importance for the application to storage of High Level Liquid Nuclear Waste. We begin by developing a model describing the evaporation of pure liquid droplets in order to establish a framework. This model is developed through the use of continuum mechanics and thermodynamic theory, and we focus on the specific case of pure water droplets. We establish a model considering a pure water vapour atmosphere, and then expand this model to account for the presence of an atmospheric gas such as air. We model colloidal particle-particle interactions and interactions between colloid and electrolyte using DLVO Theory and reaction kinetics, then incorporate these interactions into an expression for net interaction energy of a single particle with all other particles within the droplet. We account for the flow of material due to diffusion, advection, and interaction between species, and expand the pure liquid droplet models to account for the presence of these species. In addition, the process of colloidal agglomeration is modelled. To obtain solutions for our models, we develop a numerical algorithm based on the Control Volume method. To promote numerical stability, we formulate a new method of convergence acceleration. The results of a MATLAB™ code developed from this algorithm are compared with experimental data collected for the purposes of validation, and further analysis is done on the sensitivity of the solution to various controlling parameters.
Resumo:
Percolation flow problems are discussed in many research fields, such as seepage hydraulics, groundwater hydraulics, groundwater dynamics and fluid dynamics in porous media. Many physical processes appear to exhibit fractional-order behavior that may vary with time, or space, or space and time. The theory of pseudodifferential operators and equations has been used to deal with this situation. In this paper we use a fractional Darcys law with variable order Riemann-Liouville fractional derivatives, this leads to a new variable-order fractional percolation equation. In this paper, a new two-dimensional variable-order fractional percolation equation is considered. A new implicit numerical method and an alternating direct method for the two-dimensional variable-order fractional model is proposed. Consistency, stability and convergence of the implicit finite difference method are established. Finally, some numerical examples are given. The numerical results demonstrate the effectiveness of the methods. This technique can be used to simulate a three-dimensional variable-order fractional percolation equation.
Resumo:
In this paper, the multi-term time-fractional wave diffusion equations are considered. The multiterm time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], [1,2), [0,2), [0,3), [2,3) and [2,4), respectively. Some computationally effective numerical methods are proposed for simulating the multi-term time-fractional wave-diffusion equations. The numerical results demonstrate the effectiveness of theoretical analysis. These methods and techniques can also be extended to other kinds of the multi-term fractional time-space models with fractional Laplacian.