954 resultados para Carbon density
Resumo:
In order to understand the processes controlling organic carbon deposition (i.e., primary productivity vs. terrigenous supply) and their paleoceanographic significance, three sediment cores (PS2471, PS2474. and PS2476) from the Laptev Sea continental margin were investigated for their content and composition of organic carbon. The characterization of organic matter indudes the determination of buk parameters (hydrogen index values and C/N ratios) and the analysis of specific biomarkers (n-alaknes, fatty acids, alkenones, and pigments). Total organic carbon (TOC) values vary between 0.3 and 2%. In general, the organic matter from the Laptev Sea continental margin is dominated by terrigenous matter throughout. However. significant amounts of marine organic carbon occur. The turbidites, according to a still preliminary stratigraphy probably deposited during glacial Oxygen Isotope Stages 2 and 4, are characterized by maximum amounts of organic carbon of terrigenous origin. Marine organic carbon appears to show enhanced relative abundances in the Termination I (?) and early Holocene time intervals, as indicated by maximum amounts of short chain n-alkanes, short-chain fatty acids, and alkenones. The increased amounts of faity acids, however, may also have a freshwater origin due to increased river discharge at that time. The occurrence of alkenones is suggested to indicate an intensification of Atlantic water inflow along the Eurasian continental margin starting at that time. Oxygen Isotope Stage l accumutation rates of total organic carhon are 0.3, 0.17, and 0.02 C/cm**2/ky in cores PS2476, PS2474, and PS2471, respectively.
Resumo:
Stable isotope records were generated for a late Pliocene-early Pleistocene interval from Ocean Drilling Program (ODP) Site 1123 in the southwest Pacific (41°47 S, 171°30 W; 3290 m water depth). Based on these data, new revisions were made to the shipboard splice and composite section. The isotope records will be used to evaluate the influence of North Atlantic and Southern Ocean deepwater masses on water entering the Pacific in the Deep Western Boundary Current. Three holes were cored at Site 1123, yielding a complete composite section over approximately the last 4.7 m.y. A representative spliced record ("the splice") was developed aboard ship based on magnetic susceptibility, gamma ray attenuation bulk density, and percent reflectance data from the three adjacent holes (Carter, McCave, Richter, Carter, et al., 1999, doi:10.2973/odp.proc.ir.181.2000). No gaps in the sedimentary record were detected for the multiple-cored section of Site 1123. In addition to the isotope data, postcruise revisions to the splice and composite section based on stable isotope data are described here.
Resumo:
Living Heterostegina depressa were found in the Persian Gulf on shallows and sides of islands in the Central Basin. Preliminary culture experiments furnished information on life span, salinity tolerances and population density of species. Reproduction processes (probably asexual) could be observed several times. A possible carbonate production of ca. 150 g/year/m**2 has been estimated.
Resumo:
A review is given on the fundamental studies of gas-carbon reactions using electronic structure methods in the last several decades. The three types of electronic structure methods including semi-empirical, ab initio and density functional theory, methods are briefly introduced first, followed by the studies on carbon reactions with hydrogen and oxygen-containing gases (non-catalysed and catalysed). The problems yet to solve and possible promising directions are discussed. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Density functional theory calculations were used to investigate the mechanisms of NO-carbon and N2O-carbon reactions. It was the first time that the importance of surface nitrogen groups was addressed in the kinetic behaviors of the NO-carbon reaction. It was found that the off-plane nitrogen groups that are adjacent to the zigzag edge sites and in-plane nitrogen groups that are located on the armchair sites make the bond energy of oxygen desorption even ca. 20% lower than that of the off-plane epoxy group adjacent to zigzag edge sites and in-plane o-quinone oxygen atoms on armchair sites; this may explain the reason why the experimentally obtained activation energy of the NO-carbon reaction is ca. 20% lower than that of the O-2-carbon reaction over 923 K. A higher ratio of oxygen atoms can be formed in the N2O-carbon reaction, because of the lower dissociation energy of N2O, which results in a higher ratio of off-plane epoxy oxygen atoms. The desorption energy of semiquinone with double adjacent off-plane oxygen groups is ca. 20% less than that of semiquinone with only one adjacent off-plane oxygen group. This may be the reason why the activation energy of N2O is also ca. 20% less than that of the O-2-carbon reaction. The new mechanism can also provide a good qualitative comparison for the relative reaction rates of NO-, N2O-, and O-2-carbon reactions. The anisotropic characters of these gas-carbon reactions can also be well explained.
Resumo:
In this paper, we present a technique for equilibria characterization of activated carbon having slit-shaped pores. This method was first developed by Do (Do, D. D. A new method for the characterisation of micro-mesoporous materials. Presented at the International Symposium on New Trends in Colloid and Interface Science, September 24-26, 1998 Chiba, Japan) and applied by his group and other groups for characterization of pore size distribution (PSD) as well as adsorption equilibria determination of a wide range of hydrocarbons. It is refined in this paper and compared with the grand canonical Monte Carlo (GCMG) simulation and density functional theory (DFT). The refined theory results in a good agreement between the pore filling pressure versus pore width and those obtained by GCMG and DFT. Furthermore, our local isotherms are qualitatively in good agreement with those obtained by the GCMC simulations. The main advantage of this method is that it is about 4 orders of magnitude faster than the GCMC simulations, making it suitable for optimization studies and design purposes. Finally, we apply our method and the GCMG in the derivation of the PSD of a commercial activated carbon. It was found that the PSD derived from our method is comparable to that derived from the GCMG simulations.
Resumo:
Adsorption of nitrogen, argon, methane, and carbon dioxide on activated carbon Norit R1 over a wide range of pressure (up to 50 MPa) at temperatures from 298 to 343 K (supercritical conditions) is analyzed by means of the density functional theory modified by incorporating the Bender equation of state, which describes the bulk phase properties with very high accuracy. It has allowed us to precisely describe the experimental data of carbon dioxide adsorption slightly above and below its critical temperatures. The pore size distribution (PSD) obtained with supercritical gases at ambient temperatures compares reasonably well with the PSD obtained with subcritical nitrogen at 77 K. Our approach does not require the skeletal density of activated carbon from helium adsorption measurements to calculate excess adsorption. Instead, this density is treated as a fitting parameter, and in all cases its values are found to fall into a very narrow range close to 2000 kg/m(3). It was shown that in the case of high-pressure adsorption of supercritical gases the PSD could be reliably obtained for the range of pore width between 0.6 and 3 run. All wider pores can be reliably characterized only in terms of surface area as their corresponding excess local isotherms are the same over a practical range of pressure.
Resumo:
In this paper we report the results of ab initio calculations on the energetics and kinetics of oxygen-driven carbon gasification reactions using a small model cluster, with full characterisation of the stationary points on the reaction paths. We show that previously unconsidered pathways present significantly reduced barriers to reaction and must be considered as alternative viable paths. At least two electronic spin states of the model cluster must be considered for a complete description. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The C-13 NMR data of five iminopropadienones R-N=C=C=C=O as well as carbon suboxide, C3O2, have been examined theoretically and experimentally. The best theoretical results were obtained using the GIAO/B3LYP/6-31 +G**//MP2/6-31G* level of theory, which reproduces the chemical shifts of the iminopropadienone substituents extremely well while underestimating those of the cumulenic carbons by 5-10 ppm. The computationally faster GIAO/HF/6-31 + G**//B3LYP/6-31 G* level is also adequate. (C) 2004 Elsevier B.V. All rights reserved.