978 resultados para Camassa-Holm equation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamic polarizability and optical absorption spectrum of liquid water in the 6-15 eV energy range are investigated by a sequential molecular dynamics (MD)/quantum mechanical approach. The MD simulations are based on a polarizable model for liquid water. Calculation of electronic properties relies on time-dependent density functional and equation-of-motion coupled-cluster theories. Results for the dynamic polarizability, Cauchy moments, S(-2), S(-4), S(-6), and dielectric properties of liquid water are reported. The theoretical predictions for the optical absorption spectrum of liquid water are in good agreement with experimental information.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the effect of an interaction between dark energy and dark matter upon the dynamics of galaxy clusters. This effect is computed through the Layser-Irvine equation, which describes how an astrophysical system reaches virial equilibrium and was modified to include the dark interactions. Using observational data from almost 100 purportedly relaxed galaxy clusters we put constraints on the strength of the couplings in the dark sector. We compare our results with those from other observations and find that a positive (in the sense of energy flow from dark energy to dark matter) nonvanishing interaction is consistent with the data within several standard deviations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using the Berezin-Marinov pseudoclassical formulation of the spin particle we propose a classical model of spin noncommutativity. In the nonrelativistic case, the Poisson brackets between the coordinates are proportional to the spin angular momentum. The quantization of the model leads to the noncommutativity with mixed spatial and spin degrees of freedom. A modified Pauli equation, describing a spin half particle in an external electromagnetic field is obtained. We show that nonlocality caused by the spin noncommutativity depends on the spin of the particle; for spin zero, nonlocality does not appear, for spin half, Delta x Delta y >= theta(2)/2, etc. In the relativistic case the noncommutative Dirac equation was derived. For that we introduce a new star product. The advantage of our model is that in spite of the presence of noncommutativity and nonlocality, it is Lorentz invariant. Also, in the quasiclassical approximation it gives noncommutativity with a nilpotent parameter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The model of the position-dependent noncommutativity in quantum mechanics is proposed. We start with given commutation relations between the operators of coordinates [(x) over cap (i), (x) over cap (j)] = omega(ij) ((x) over cap), and construct the complete algebra of commutation relations, including the operators of momenta. The constructed algebra is a deformation of a standard Heisenberg algebra and obeys the Jacobi identity. The key point of our construction is a proposed first-order Lagrangian, which after quantization reproduces the desired commutation relations. Also we study the possibility to localize the noncommutativity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a field theory model for dark energy and dark matter in interaction. Comparing the classical solutions of the field equations with the observations of the CMB shift parameter, baryonic acoustic oscillations, lookback time, and the Gold supernovae sample, we observe a possible interaction between dark sectors with energy decay from dark energy into dark matter. The observed interaction provides an alleviation to the coincidence problem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The abundance and distribution of collapsed objects such as galaxy clusters will become an important tool to investigate the nature of dark energy and dark matter. Number counts of very massive objects are sensitive not only to the equation of state of dark energy, which parametrizes the smooth component of its pressure, but also to the sound speed of dark energy, which determines the amount of pressure in inhomogeneous and collapsed structures. Since the evolution of these structures must be followed well into the nonlinear regime, and a fully relativistic framework for this regime does not exist yet, we compare two approximate schemes: the widely used spherical collapse model and the pseudo-Newtonian approach. We show that both approximation schemes convey identical equations for the density contrast, when the pressure perturbation of dark energy is parametrized in terms of an effective sound speed. We also make a comparison of these approximate approaches to general relativity in the linearized regime, which lends some support to the approximations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We construct an invisible quantum barrier which represents the phenomenon of quantum reflection using available data on atom-wall and Bose-Einstein-condensate-wall reflection. We use the Abel equation to invert the data. The resulting invisible quantum barrier is double valued in both axes. We study this invisible barrier in the case of atom and Bose-Einstein condensate (BEC) reflection from a solid silicon surface. A time-dependent, one-spatial-dimension Gross-Pitaevskii equation is solved for the BEC case. We found that the BEC behaves very similarly to the single atom except for size effects, which manifest themselves in a maximum in the reflectivity at small distances from the wall. The effect of the atom-atom interaction on the BEC reflection and correspondingly on the invisible barrier is found to be appreciable at low velocities and comparable to the finite-size effect. The trapping of an ultracold atom or BEC between two walls is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We develop a combined hydro-kinetic approach which incorporates a hydrodynamical expansion of the systems formed in A + A collisions and their dynamical decoupling described by escape probabilities. The method corresponds to a generalized relaxation time (tau(rel)) approximation for the Boltzmann equation applied to inhomogeneous expanding systems; at small tau(rel) it also allows one to catch the viscous effects in hadronic component-hadron-resonance gas. We demonstrate how the approximation of sudden freeze-out can be obtained within this dynamical picture of continuous emission and find that hypersurfaces, corresponding to a sharp freeze-out limit, are momentum dependent. The pion m(T) spectra are computed in the developed hydro-kinetic model, and compared with those obtained from ideal hydrodynamics with the Cooper-Frye isothermal prescription. Our results indicate that there does not exist a universal freeze-out temperature for pions with different momenta, and support an earlier decoupling of higher p(T) particles. By performing numerical simulations for various initial conditions and equations of state we identify several characteristic features of the bulk QCD matter evolution preferred in view of the current analysis of heavy ion collisions at RHIC energies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cosmological analyses based on currently available observations are unable to rule out a sizeable coupling between dark energy and dark matter. However, the signature of the coupling is not easy to grasp, since the coupling is degenerate with other cosmological parameters, such as the dark energy equation of state and the dark matter abundance. We discuss possible ways to break such degeneracy. Based on the perturbation formalism, we carry out the global fitting by using the latest observational data and get a tight constraint on the interaction between dark sectors. We find that the appropriate interaction can alleviate the coincidence problem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We discuss the derivation of an equivalent polarization potential independent of angular momentum l for use in the optical Schrodinger equation that describes the elastic scattering of heavy ions. Three different methods are used for this purpose. Application of our theory to the low energy scattering of light heavy-ion systems at near-barrier energies is made. It is found that the notion of an l-independent polarization potential has some validity but cannot be a good substitute for the l-dependent local equivalent Feshbach polarization potential.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We discuss the intriguing possibility that dark energy may change its equation of state in situations where large dark energy fluctuations are present. We show indications of this dynamical mutation in some generic models of dark energy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nonlinear regime of low-temperature magnetoresistance of double quantum wells in the region of magnetic fields below 1 T is studied both experimentally and theoretically. The observed inversion of the magnetointersubband oscillation peaks with increasing electric current and splitting of these peaks are described by the theory based on the kinetic equation for the isotropic nonequilibrium part of electron distribution function. The inelastic-scattering time of electrons is determined from the current dependence of the inversion field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The local-density approximation (LDA) together with the half occupation (transitionstate) is notoriously successful in the calculation of atomic ionization potentials. When it comes to extended systems, such as a semiconductor infinite system, it has been very difficult to find a way to half ionize because the hole tends to be infinitely extended (a Bloch wave). The answer to this problem lies in the LDA formalism itself. One proves that the half occupation is equivalent to introducing the hole self-energy (electrostatic and exchange correlation) into the Schrodinger equation. The argument then becomes simple: The eigenvalue minus the self-energy has to be minimized because the atom has a minimal energy. Then one simply proves that the hole is localized, not infinitely extended, because it must have maximal self-energy. Then one also arrives at an equation similar to the self- interaction correction equation, but corrected for the removal of just 1/2 electron. Applied to the calculation of band gaps and effective masses, we use the self- energy calculated in atoms and attain a precision similar to that of GW, but with the great advantage that it requires no more computational effort than standard LDA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We construct a nonrelativistic wave equation for spinning particles in the noncommutative space (in a sense, a theta modification of the Pauli equation). To this end, we consider the nonrelativistic limit of the theta-modified Dirac equation. To complete the consideration, we present a pseudoclassical model (a la Berezin-Marinov) for the corresponding nonrelativistic particle in the noncommutative space. To justify the latter model, we demonstrate that its quantization leads to the theta-modified Pauli equation. We extract theta-modified interaction between a nonrelativistic spin and a magnetic field from such a Pauli equation and construct a theta modification of the Heisenberg model for two coupled spins placed in an external magnetic field. In the framework of such a model, we calculate the probability transition between two orthogonal Einstein-Podolsky-Rosen states for a pair of spins in an oscillatory magnetic field and show that some of such transitions, which are forbidden in the commutative space, are possible due to the space noncommutativity. This allows us to estimate an upper bound on the noncommutativity parameter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a U(1)(*)-noncommutative gauge field theory we extend the Seiberg-Witten map to include the (gauge-invariance-violating) external current and formulate-to the first order in the noncommutative parameter-gauge-covariant classical field equations. We find solutions to these equations in the vacuum and in an external magnetic field, when the 4-current is a static electric charge of a finite size a, restricted from below by the elementary length. We impose extra boundary conditions, which we use to rule out all singularities, 1/r included, from the solutions. The static charge proves to be a magnetic dipole, with its magnetic moment being inversely proportional to its size a. The external magnetic field modifies the long-range Coulomb field and some electromagnetic form factors. We also analyze the ambiguity in the Seiberg-Witten map and show that at least to the order studied here it is equivalent to the ambiguity of adding a homogeneous solution to the current-conservation equation.