971 resultados para Cadmium.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dried biomass of the zoosporic fungi Saprolegnia subterranea and Pythium torulosum was evaluated for copper, manganese and cadmium biosorption from aqueous solutions using the "q" (mg of adsorbed metal per g of biomass) and the "R%" (percent removal) indices. The highest q values were observed when the biomass was placed in contact with high metal concentrations, whereas the highest R% values were observed at low concentrations (p< 0.05). S. subterranea SPC 1244 biomass surpassed the others for copper biosorption (q = 7.48 mg/ g; R% = 49.03), P. torulosum SPC 1425 biomass was the best for manganese biosorption (q = 4.13 mg/g; R% = 26.71), and S. subterranea SPC 1431 biomass was the best for cadmium biosorption (q = 6.75 mg/g; R% = 42.26). This is the first report on copper, manganese and cadmium biosorption by the biomass of these zoosporic fungi, indicating the potential to remove ions from diluted solutions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An analytical procedure for direct introduction of biodiesel samples into an inductively coupled plasma mass spectrometer (ICP-MS) by using microemulsion for sample preparation was developed here. Cadmium, Co, Cu, Mn, Ni, Pb, Ti, and Zn were determined in biodiesel microemulsified samples prepared from different oleaginous sources (African palm, castor beans, palm, soybeans and an unknown oleaginous). Microemulsions were prepared using 0.25 mL Triton X-100, 0.25 mL 20% v v(-1) HNO(3), 0.50 mL biodiesel sample and 4.0 mL n-propanol. Argon-oxygen mixture was added to the plasma as auxiliary gas for correcting matrix effects caused by the high carbon load due to biodiesel microemulsions. The oxygen gas flow rate was set in 37.5 mL min(-1). The accuracy of the developed procedure was evaluated by applying addition-recovery experiments for biodiesel samples from different sources. Recoveries varied from 76.5 to 116.2% for all analytes but Zn in castor beans biodiesel sample (65.0 to 76.2%). Recoveries lower than 86.6% were obtained for palm biodiesel sample, probably due to matrix effects. Detection limits calculated by using oxygen in the composition of the auxiliary gas added to the plasma were higher than those calculated without using it, probably due to the highest formation of oxides. Despite oxides formation, best analytical performance was reached by using oxygen as auxiliary gas and by proper correction of transport interferences. The developed procedure based on microemulsion formation was suitable for direct introduction of biodiesel samples in ICP-MS. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The south region of São Paulo city hosts the Guarapiranga dam, responsible for water supply to 25% of the city population. Their surroundings have been subject to intense and irregular occupation by people from very low socioeconomics classes. Measurements undertaken on sediment and particulate materials in the dam revealed concentrations of lead. copper, zinc and cadmium above internationally accepted limits. Epidemiological and toxicological studies undertaken by the World Health Organization in individuals exhibiting lead concentrations in blood, near or below the maximum recommended (10 mu g dl(-1)), surprisingly revealed that toxic effects are more intense in individuals belonging to low socioeconomics classes. Motivated by these facts, we aimed at the investigation of chronic incorporation of lead. as well as the use of our BIOKINETICS code, which is based on an accepted ICRP biokinetics model for lead, in order to extrapolate the results from teeth to other organs. The focus of our data taking was children from poor families, living in a small, restrict and allegedly contaminated area in São Paulo city. Thus, a total of 74 human teeth were collected. The average concentration of lead in teeth of children 5 to 10 years old was determined by means of a high-resolution inductively coupled plasma mass spectrometer (ICP-MS). For standardization of the measurements, an animal bone certified material (H-Animal Bone), from the International Atomic Energy Agency, was analyzed. The amount of lead in children living in the surroundings of the dam, was approximately 40% higher than those from the control region, and the average lead concentration was equal to 1.3 mu g g(-1) approximately. Grouping the results in terms of gender, tooth type and condition, it was concluded that a carious molar of boys is a much more efficient contamination pathway for lead, resulting in concentrations 70% higher than in the control region. We also inferred the average concentrations of lead in other organs of these children, by making use of our BIOKINETIC code. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chemically modified silica, obtained by reacting 2-mercaptobenz-imidazole with 3-chloropropyl silica gel, was used to adsorb Cu(II), Zn(II), Cd(II) and Pb(II) from aqueous solutions at various pH. Between pH 3-5, the order of selectivity was Hg(II) > Cd(II) ≫ Cu(II) ∼ Zn(II) ∼ Pb(II). Under batch conditions retentions of 100% were achieved for all metals except for Pb(II) where 93% was attained. Under column conditions recoveries of 100% were obtained for all metals. © 1990 Springer-Verlag.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article a new technique for thermal neutron detection using pyroelectric ceramics is described. The detector system is basically constituted of a PZT (lead zirconate titanate) ceramic attached to an uranium disk. The energy released in the uranium fission gives rise to an electrical signal in the detector which is amplified by a lock-in system. The neutron beam impinging on the uranium disk was modulated with a cadmium chopper. Thermal neutron fluxes within the interval of 103 to 106 n/cm2 s have been detected using a U3O8 pellet with 20% enrichment in 235U. © 1992.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magneto-optical rotation was measured at room temperature for glasses containing Bi2O3-CdO-GeO2 (BCG), and Bi2O3-PbO-GeO2-B2O3 (BPGP). A pulsed magnetic field between 50 and 80 KG was used to measure Faraday rotation at 632.8 nm as a function of the concentration of Bi and Cd for BCG and Bi and Pb for BPGB. Verdet constant as high as 0.162 min G-1 cm-1 at 632.8 nm for the BPGB sample with the highest concentrations of Bi and Cd was found. Verdet constant increases linearly with the heavy-metal concentration for the BPGB whereas it reaches some saturation for the BCG system. Measurements of the magneto-optical rotation at other wavelengths in the visible and the refractive index at 632.8 nm are also reported. © 1998 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method is described for the simultaneous determination of Cd, Cr, Ni and Pb in mineral water samples by graphite furnace atomic absorption spectrometry with a transversely heated graphite atomizer (THGA) and a longitudinal Zeeman-effect background correction system. The electrothermal behavior of analytes during pyrolysis and atomization steps was studied without modifier, in presence of 5 μg Pd and 3 μg Mg(NO3)2 and in presence of 50 μg NH4H2PO4 and 3 μg Mg(NO3)2. A volume of 20 μL of a 0.028 mol L -1 HNO3 solution containing 50 μg L-1 Ni and Pb, 10 μg L-1 Cr and 5 μg L-1 Cd was dispensed into the graphite tube at 20°C. The mixture palladium/magnesium was selected as the optimum modifier. The pyrolysis and atomization temperatures were fixed at 1000°C and 2300°C, respectively. The characteristic masses were calculated as 2.2 pg Cd, 10 pg Cr, 42 pg Ni and 66 pg Pb and the lifetime of the graphite tube was around 600 firings. Limits of detection based on integrated absorbance were 0.02 μg L-1Cd, 0.94 μg L-1 Cr, 0.45 μg L-1 Ni and 0.75 μg L-1 Pb, which exceeded the requirements of Brazilian Food Regulation that establish the maximum permissible level for Cd, Cr, Ni and Pb at 3 μg L-1, 50 μg L-1, 20 μg L-1 and 10 μg L-1, respectively. The recoveries of Cd, Cr, Ni and Pb added to mineral water samples varied within the 93-108%, 96-104%, 87-101% and 98-108% ranges, respectively. Results of analysis of standard reference materials (National Institute of Standards and Technology: 1640-Trace Elements in Natural Water; 1643d-Trace Elements in Water) were in agreement with certified values at the 95% confidence level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the present work was to carry out experimental comparison between humic substances (HS) and representative α-amino acids (methionine, methionine sulfoxide and cysteine hydrochloride) in relation to the complexation of biologically active trace elements (Al, Cu, Pb, Mn, Zn, Cd and Ni). A mobile time-controlled tangential-flow UF technique was applied to differentiate between HS-metal and α-aminoacids-metal complexes. Metal determinations were conventionally carried out using a ICP-OES. The results showed that HS may be considered as a selective complexing agents with higher metal bonding capability in relation to Al, Cu and Pb, the fact that may be clinically important.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, non-nutrient heavy metal concentrations (Cd, Cr, Ni and Pb) were measured in composts during the composting process, in compost/Red-yellow Latosol mixtures, and in tomato plants. Composts were produced using sugar-cane bagasse, biosolids and cattle manure in the proportions 75-0-25, 75-12.5-12.5, 75-25-0, 50-50-0 or 0-100-0 (composts with 0, 12.5, 25, 50 and 100% biosolids). The composts were applied to the soil, in 6 treatments and a control (mineral fertilization). Control and the 0% biosolids treatments received inorganic nitrogen and all the treatments received the same amount of N, P and K. Tomato plants were cultivated in 24-L pots, in a green house in Jaboticabal, SP, Brazil. The experiment had a split plot design, in randomized blocks. Cadmium, Cr, Ni and Pb concentrations were determined during the composting process (7, 27, 57, 97 and 127 days after compost mounting), in soil (0 and 164 days after mixing) and plants. The samples were subjected to digestion with HNO 3, H2O2 and HCl and the metals were determined by AAS. Negative correlations were observed between Cd, Cr and Pb in the compost and Cd, Cr and Pb plant uptake, as well as Ni in the compost and Ni concentration in the plants. The concentrations of Cd, Cr, Ni and Pb increased during composting. Only Cd levels increased when compost was applied to the soil. The roots accumulated Cr, Ni and Pb, the stems and leaves, Cd and Ni and the fruits did not accumulate any of the metals studied. The composts with biosolids did not increase Cd, Cr, Ni and Pb uptake by plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of phosphate fertilizers and amendments in sugar cane crops may increase the concentration of some elements in soils, from where they would become available for plants (principally in acid soils) and transferred to me human food chain. This paper reports the transference of heavy metals (Cd, Cr, Cu, Ni, Pb and Zn), fluorine and radionuclides ( 238U, 234U, 226Ra, 232Th and 40K) from phosphate fertilizers and amendments to agricultural soils at Corumbatal River basin (SP). The products utilized and colleted in sugar cane crops at Corumbatai River basin are: phosphate fertilizers NPK 5:25:25 (two samples), limestones (three samples), phosphogypsum (two samples) and KCl (two samples). The heavy metals were determined by atomic absorption spectrometry (AAS), fluorine by potentiometry and radionuclides by alpha and gamma spectrometry. Heavy metals (17.8, 31.2, 75.2, 69.5, 138.8, 114.9 and 342.9 g/ha of Cd, Cr, Cu, Ni, Pb, Zn and F, respectively) and radionuclides (0.47, 0.16, 0.17 and 6.33 Bq/kg of soil to 238U, 226Ra, 232Th and 40K, respectively) incorporated in phosphate fertilizers and amendments are annually added in the sugar cane crops, but if utilized in accordance with the recommended rates, they do not raise the concentration levels in soils up to hazards values.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alginate is one the materials most employed in practice to make dental impressions. Substances like zinc, cadmium and lead silicate, which are included in several alginate brands with the aim of improving their physical, chemical and mechanical properties, are a source of serious concern as regards their toxicity. The most serious chronic effect of oral exposure to cadmium is renal toxicity. Assimilation of lead has deleterious effects on the gastrointestinal tract, hematopoietic system, cardiovascular system, central and peripheral nervous systems, kidneys, immune system, and reproductive system. Chronic oral exposures to zinc have resulted in hypochromic and microcyte anemia in some individuals. The aim of the present study was to measure the cadmium, lead and zinc contents of seven brands of alginate for dental use on sale in Brazil. The samples were weighed and placed in the Teflon cups of a closed-system microwave oven. Aqua regia (4mL concentrated HCI:HNO3, 3:1 v/v) and hydrofluoric acid (2mL concentrated HF) were added to the samples, which were then subjected to heating. The samples were then cooled to room temperature and diluted to 25 mL in deionized water in a volumetric glass flask. The samples were diluted in duplicate and analyzed against a reagent blank. The analyses were performed in an atomic absorption flame spectrophotometer. Neither lead nor cadmium was detected. Zinc contents ranged from 0.001% to 1.36% by weight. The alginates exhibited low contents of the metals under study and gave no cause for concern regarding toxicity; even so, it is advisable to monitor potentially toxic materials continually and to analyze their plasmatic levels in the professionals working with them.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is well known that fatigue behaviour is an important parameter to be considered in mechanical components subjected to constant and variable amplitude loadings. In combination with corrosion phenomenon, fatigue effects were responsible for proximally 64% of fails that occur in metallic parts of aeronautical accidents in the last 30 years. Recovered substrates have been extensively used in the aerospace field. Cadmium electroplating has been widely applied to promote protective coatings in aeronautical components, resulting in excellent corrosion protection combined with a good performance in cyclic loading. Ecological considerations allied to the increasing demands for corrosion resistance, resulted in the search for possible alternatives. Zinc-nickel alloys received considerable interest recently, since these coatings showed some advantages such as a good resistance to white and red rust, high plating rates and acceptation in the market. In this study the effects of zinc-nickel coatings electroplated on AISI 4340 high strength steel were analysed on rotating bending and axial fatigue strength, corrosion and adhesion resistance. Compressive residual stress field was measured by a X-ray tensometry prior to fatigue tests. Optical microscopy images showed coating thicknesses, adhesion and the existence of an uniform coverage of nearly all substrates. The fractured fatigue specimens were investigated using a scanning electron microscope. Three different zinc-nickel coating thicknesses were tested and comparison with rotating bending fatigue data from specimens cadmium electroplated and heat treated at 190°C for 3, 8 and 24 hours to avoid the diffusion of hydrogen in the substrate, was performed. Experimental results showed effect of coatings on the AISI 4340 steel behaviour when submitted to fatigue testing and the existence of coating thickness influence on the fatigue strength.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method has been developed for the simultaneous determination of Cd and Pb in antibiotics used in sugar-cane fermentation by GFAAS. The integrated platform of transversely heated graphite atomizer was treated with tungsten to form a coating of tungsten carbide. Six samples of commercial solid antibiotics were analyzed by injecting 20 μL of digested samples into the pretreated graphite platform with co-injection of 5 μL of 1000 mg L-1 Pd as chemical modifier. Samples were mineralized in a closed-vessel microwave-assisted acid-digestion system using nitric acid plus hydrogen peroxide. The pyrolysis and atomization temperatures of the heating program of the atomizer were selected as 600°C and 2200°C, respectively. The calculated characteristic mass for Cd and Pb was 1.6 pg and 42 pg, respectively. Limits of detection (LOD) based on integrated absorbance were 0.02 μg L -1 Cd and 0.7 μg L-1 Pb and the relative standard deviations (n = 10) for Cd and Pb were 5.7% and 8.0%, respectively. The recoveries of Cd and Pb added to the digested samples varied from 91% to 125% (Cd) and 80% to 112% (Pb).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alginate or irreversible hydrocolloid is one the most accepted and frequently employed impression materials in dental practice. Substances like zinc, cadmium, lead silicate and fluorides, which are included in several alginate brands with the aim of improving their physical, chemical and mechanical properties, are a source of serious concern as regards their toxicity. Some brands of alginate have been reported to contain potentially toxic fluorides and metals such as cadmium, lead and zinc silicates, either singly or combined. Consequently, special care should be taken while preparing of these materials. It is necessary to monitor potentially toxic chemicals and metals in the alginates continually to avoid contamination of dental professionals and patients. In this review, alginates used in dentistry are analyzed for potential toxicity.