800 resultados para CUO-CEO2


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The low temperature water–gas shift (WGS) reaction has been studied over Ni–CeO2/Graphene and Ni/Graphene. The catalysts were prepared with 5 wt.% Ni and 20 wt.% CeO2 loadings, by deposition-precipitation employing sodium hydroxide and urea as precipitating agents. The materials were characterized by TEM, powder X-ray diffraction, Raman spectroscopy, H2-temperature-programmed reduction and X-ray photoelectron spectroscopy (XPS). The characterization and the reaction results indicated that the interaction between the active species and the support is higher than with activated carbon, and this hinders the reducibility of ceria and thus the catalytic performance. On the other hand, the presence of residual sodium in samples prepared by precipitation with NaOH facilitated the reduction of ceria. The catalytic activity was highly improved in the presence of sodium, what can be explained on the basis of an associative reaction mechanism which is favored over Ni-O-Na entities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The low temperature water-gas shift (WGS) reaction has been studied over two commercial multiwall carbon nanotubes-supported nickel catalysts promoted by ceria. For comparison purposes, activated carbon-supported catalysts have also been studied. The catalytic performance and the characterization by N2 adsorption analysis, powder X-ray diffraction (XRD), temperature-programmed reduction with H2 (TPR-H2), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) analysis showed that the surface chemistry has an important effect on the dispersion of ceria. As a result, ceria was successfully dispersed over the carbon nanotubes (CNTs) with less graphitic character, and the catalyst afforded better activity in WGS than the catalyst prepared over massive ceria. Moreover, a 20 wt.% CeO2 loading over this support was more active than the analogous catalyst with a 40 wt.% loading. The ceria nanoparticles were smaller when the support was previously oxidized, however this resulted in a decrease of the activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

5% copper catalysts with Ce0.8M0.2Oδ supports (M = Zr, La, Ce, Pr or Nd) have been studied by rapid-scan operando DRIFTS for NOx Storage and Reduction (NSR) with high frequency (30 s) CO, H2 and 50%CO + 50%H2 micropulses. In the absence of reductant pulses, below 200–250 °C NOx was stored on the catalysts as nitrite and nitro groups, and above this temperature nitrates were the main species identified. The thermal stability of the NOx species stored on the catalysts depended on the acid/basic character of the dopant (M more acidic = NOx stored less stable ⇒ Zr4+ < none < Nd3+ < Pr3+ < La3+ ⇐ M more basic = NOx stored more stable). Catalysts regeneration was more efficient with H2 than with CO, and the CO + H2 mixture presented an intermediate behavior, but with smaller differences among the series of catalyst than observed using CO alone. N2 is the main NOx reduction product upon H2 regeneration. The highest NOx removal in NSR experiments performed at 400 °C with CO + H2 pulses was achieved with the catalyst with the most basic dopant (CuO/Ce0.8La0.2Oδ) while the poorest performing catalyst was that with the most acidic dopant (CuO/Ce0.8Zr0.2Oδ). The poor performance of CuO/Ce0.8Zr0.2Oδ in NSR experiments with CO pulses was attributed to its lower oxidation capacity compared to the other catalysts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Information about the first finding of awaruite in oceanic peridotites is given. Petrography of rocks, mineralogy, and minerals associated with awaruite are characterized.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Manganese nodules made of radiating rods of well crystallized birnessite were sampled at 8 degree 481.2'N, 103 degree 53.8W, 1875 m below sea level by a dredge that also collected hyaloclastite and basaltic talus. The nodule field is on the floor of a caldera within a young tholeiitic seamount and was discovered and photographed during a deep-two survey. It is interpreted as a brecciated hydrothermal deposit, crystallized from an amorphous manganese oxide precipitate that formed when seawater-based hydrothermal fluids mixed with oxidized seawater. The nodules and surrounding igneous rocks have subsequently been encrusted with hydrogenous ferromanganese oxides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fluid inclusions in variably altered diabase recovered from Ocean Drilling Program Legs 137 and 140 at Hole 504B, Costa Rica Rift, exhibit fluid salinities up to 3.7 times that of seawater values (11.7 wt% NaCl equivalent) and exhibit uncorrected homogenization temperatures of 125°C to 202°C. The liquid-dominated inclusions commonly are entrapped in zones of secondary plagioclase and may be primary in origin. Fluid salinities are similar to compositions of fluids venting on the seafloor (0.4-7.0 wt% NaCl) and overlap with those measured in metabasalt samples recovered from near the Kane Fracture Zone on the Mid-Atlantic Ridge and from the Troodos ophiolite, Cyprus. The salinity variations may reflect hydration reactions involving formation of secondary mineral assemblages under rock-dominated conditions, which modify the ionic strength of hydrothermal fluids by consuming or liberating water and chloride ion. Rare CO2-CH4-bearing inclusions, subjacent to zones where talc after olivine becomes an important secondary mineral phase (1700 mbsf), may have formed due to local interaction of seawater and olivine at low water to rock ratios. Corrected average fluid inclusion homogenization temperatures exhibit a gradient from 159°C at a depth of 1370 mbsf to 183°C at a depth of 1992 mbsf and are in apparent equilibrium with the present conductive downhole temperatures. These data indicate that fluid inclusions may be used to estimate downhole temperatures if logging data are unavailable. The compositional and thermal evolution of the diabase-hosted fluids may reflect late-stage, off-axis circulation and conductive heating of compositionally modified seawater in the sheeted dike complex at Hole 504B.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Manganese nodules occurring within marine sediments of presumably Upper Miocene-Lower Pliocene age from cores obtained by the Argentine oceanographic vessel ARA Islas Orcadas in 1977 on the Malvinas (Falkland) Plateau and neighbouring Scotia Sea were studied with the aim of comparing them with other fossil nodules found on the mainland of Argentina that were also ascribed to the marine environment. After optical mineralogical, chemical, X-ray and trace element analysis, the studied "nodules" proved to be actually wacke clasts cemented by manganese oxides with a high Fe/Mn ratio corresponding to a continental environment. The studied "nodules" thus differ from the Argentine mainland nodules and are supposed to have been transported from continental environments and then deposited in the marine realms. The wacke clasts became then nuclei for the deposition of the marine manganese oxides of the coatings. The proportion of trace elements, which is high, suggests the growth of the nodules in the marine environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Granular gamma-Al2O3 support and 8 wt % CuO/gamma-Al2O3 catalyst were synthesized by a sol-gel granulation method. The pore structure, crush strength, hardness, and elasticity of these sol-gel-derived catalysts were studied and compared with similar commercial catalysts prepared by non-sol-gel methods. Alumina and CuO-coated alumina granular particles prepared by different methods have different macro- and microstructure. The sol-gel-derived granular gamma-alumina and CuO-coated gamma-alumina granular particles have a structure defined by compact packing of uniform, nanosized gamma-alumina crystallites. They are characterized by a more uniform pore size distribution and larger surface area as compared to similar commercial samples with a structure defined by packing of aggregates consisting of nonuniform gamma-alumina crystallites. Because of the differences in the macro- and microstructure, the sol-gel-derived granular samples offer higher crush strength and greater hardness than the commercial samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of mesoporous Al2O3 samples with different porous structures and phases were prepared and used as supports for Cu/Al2O3 catalysts. These catalysts were characterized by N-2 adsorption, NMR, TGA, XRD, and UV - vis spectroscopic techniques and tested for the catalytic reaction of N2O decomposition. The activity increased with the increasing calcination temperatures of supports from 450 to 900 degreesC; however, a further increase in calcination temperature up to 1200 degreesC resulted in a significant reduction in activity. Characterization revealed that the calcination temperatures of supports influenced the porous structures and phases of the supports, which in turn affected the dispersions, phases, and activities of the impregnated copper catalyst. The different roles of surface spinel, bulk CuAl2O4, and bulk CuO is clarified for N2O catalytic decomposition. Two mechanism schemes were thus proposed to account for the varying activities of different catalysts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experimental laboratory methods have been developed that enable phase-equilibria studies to be carried out on slags in the system Ca-Cu-Fe-O in equilibrium with metallic copper. These techniques involve equilibration at temperature, rapid quenching, and chemical analysis of the phases using electron-probe X-ray microanalysis (EPNIA). Equilibration experiments have been carried out in the temperature range of 1150 degreesC to 1250 degreesC (1423 to 1523 K) and in the composition range of 4 to 80 wt pct "Cu2O," 0 to 25 wt pct CaO, and 20 to 75 wt pct "Fe2O3" in equilibrium with metallic copper. Liquidus and solidus data are reported for the primary-phase fields of spinel (magnetite) and dicalcium ferrite. The resulting data have been used to construct liquidus isotherms of the CaO-"Cu2O"-"Fe2O3" system at metallic copper saturation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Local structures around host Ce and dopant Y cations in 10 mol% Y2O3 doped ceria solid solutions have been investigated by room and high temperature EXAFS spectroscopy. The results show that the local structures around the Cc cation in doped ceria samples are similar to that in the fluorite CeO2 structure though the coordination numbers of Ce-O tend to be smaller than 8. The local structures around Y cation, however, are significantly different from those around Ce cation, and show more resemblance to that around Y cation in the C-type Y2O3 Structure. A more accurate description of the local structures around Y cation in doped ceria was given by analyzing Y-K edge EXAFS spectra based on the C-type Y2O3 structure. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A bimetallic oxidation catalyst has been synthesized via wet impregnation of copper and iron over a mesoporous SBA-15 silica support. Physicochemical properties of the resulting material were characterized by XRD, N2 physisorption, DRUVS, FTIR, Raman, SEM and HRTEM, revealing the structural integrity of the parent SBA-15, and presence of highly dispersed Cu and Fe species present as CuO and Fe2O3. The CuFe/SBA-15 bimetallic catalyst was subsequently utilized for the oxidative degradation of N,N-diethyl-p-phenyl diamine (DPD) employing a H2O2 oxidant in aqueous solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to study the effect of washcoat composition on lean NOx trap (LNT) aging characteristics, fully formulated monolithic LNT catalysts containing varying amounts of La-stabilized CeO2 (5 wt% La2O3) or CeO2-ZrO2 (Ce:Zr = 70:30) were subjected to accelerated aging on a bench reactor. Subsequent catalyst evaluation revealed that aging resulted in deterioration of the NOx storage, NOx release and NOx reduction functions, whereas the observation of lean phase NO2 slip for all of the aged catalysts indicated that LNT performance was not limited by the kinetics of NO oxidation. After aging, all of the catalysts showed increased selectivity to NH3 in the temperature range 250–450 °C. TEM, H2 chemisorption, XPS and elemental analysis data revealed two main changes which can explain the degradation in LNT performance. First, residual sulfur in the catalysts, present as BaSO4, decreased catalyst NOx storage capacity. Second, sintering of the precious metals in the washcoat was observed, which can be expected to decrease the rate of NOx reduction. Additionally, sintering is hypothesized to result in segregation of the precious metal and Ba phases, resulting in less efficient NOx spillover from Pt to Ba during NOx adsorption, as well as decreased rates of reductant spillover from Pt to Ba and reverse NOx spillover during catalyst regeneration. Spectacular improvement in LNT durability was observed for catalysts containing CeO2 or CeO2-ZrO2 relative to their non-ceria containing analog. This was attributed to (i) the ability of ceria to participate in NOx storage/reduction as a supplement to the main Ba NOx storage component; (ii) the fact that Pt and CeO2(-ZrO2) are not subject to phase segregation; and (iii) the ability of ceria to trap sulfur, resulting in decreased sulfur accumulation on the Ba component.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study presents a computational fluid dynamic (CFD) study of Dimethyl Ether steam reforming (DME-SR) in a large scale Circulating Fluidized Bed (CFB) reactor. The CFD model is based on Eulerian-Eulerian dispersed flow and solved using commercial software (ANSYS FLUENT). The DME-SR reactions scheme and kinetics in the presence of a bifunctional catalyst of CuO/ZnO/Al2O3+ZSM-5 were incorporated in the model using in-house developed user-defined function. The model was validated by comparing the predictions with experimental data from the literature. The results revealed for the first time detailed CFB reactor hydrodynamics, gas residence time, temperature distribution and product gas composition at a selected operating condition of 300 °C and steam to DME mass ratio of 3 (molar ratio of 7.62). The spatial variation in the gas species concentrations suggests the existence of three distinct reaction zones but limited temperature variations. The DME conversion and hydrogen yield were found to be 87% and 59% respectively, resulting in a product gas consisting of 72 mol% hydrogen. In part II of this study, the model presented here will be used to optimize the reactor design and study the effect of operating conditions on the reactor performance and products.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The selective liquid phase hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on SiO2, ZnO, γ-Al2O3, CeO2 is reported under extremely mild conditions. Ambient hydrogen pressure, and temperatures as low as 50 °C are shown sufficient to drive furfural hydrogenation with high conversion and >99% selectivity to furfuryl alcohol. Strong support and solvent dependencies are observed, with methanol and n-butanol proving excellent solvents for promoting high furfuryl alcohol yields over uniformly dispersed 4 nm Pt nanoparticles over MgO, CeO2 and γ-Al2O3. In contrast, non-polar solvents conferred poor furfural conversion, while ethanol favored acetal by-product formation. Furfural selective hydrogenation can be tuned through controlling the oxide support, reaction solvent and temperature.