984 resultados para CTA1-DD


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrocarbon gases were determined in sediments from three mud volcanoes in the Sorokin Trough. In comparison to a reference station outside the mud volcano area, the deposits are characterized by an enrichment of high-molecular hydrocarbons (C2-C4), an absence of unsaturated homologues, a predominance of iso-butane in comparison with n-butane, and the presence of gas hydrate. The molecular composition of the hydrocarbon gases suggests their deep sources and thermogenic origin. In the pelagic sediments at the reference station, the methane concentration is relatively low (up to 49 ml/l); maximum concentrations are reached in deposits of the Dvurechenskii mud volcano (up to 400 ml/l). It was the first time that gas hydrate was sampled at the Dvurechenskii mud volcano. The gas extracted by dissociation of hydrate samples was dominated by methane (99.5%) with low amounts of ethane and propane (less than 0.5%). The isotopic composition of the methane varies between -62 and -66 per mill PDB in d13C, and between -185 and -209 per mill SMOW in dD, indicating a mainly biogenic origin with an admixture of thermogenic gas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Past hydrological changes in Africa have been linked to various climatic processes, depending on region and timescale. Long-term precipitation changes in the regions of northern and southern Africa influenced by the monsoons are thought to have been governed by precessional variations in summer insolation (Kutzbach and Liu, 1997, doi:10.1126/science.278.5337.440; Partridge et al., 1997, doi:10.1016/S0277-3791(97)00005-X). Conversely, short-term precipitation changes in the northern African tropics have been linked to North Atlantic sea surface temperature anomalies, affecting the northward extension of the Intertropical Convergence Zone and its associated rainbelt (Hastenrath, 1990, doi:10.1002/joc.3370100504, Street-Perrott and Perrott, 1990, doi:10.1038/343607a0). Our knowledge of large-scale hydrological changes in equatorial Africa and their forcing factors is, however, limited (Gasse, 2000, doi:10.1016/S0277-3791(99)00061-X). Here we analyse the isotopic composition of terrigenous plant lipids, extracted from a marine sediment core close to the Congo River mouth, in order to reconstruct past central African rainfall variations and compare this record to sea surface temperature changes in the South Atlantic Ocean. We find that central African precipitation during the past 20,000 years was mainly controlled by the difference in sea surface temperatures between the tropics and subtropics of the South Atlantic Ocean, whereas we find no evidence that changes in the position of the Intertropical Convergence Zone had a significant influence on the overall moisture availability in central Africa. We conclude that changes in ocean circulation, and hence sea surface temperature patterns, were important in modulating atmospheric moisture transport onto the central African continent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study of chemical and isotopic composition of coastal thermal springs and waters of the Kraternaya Bay, Yankicha Island, revealed that the total mineralization and concentrations of d18O and d2H decrease from the thermal spring site I to V. These waters are of marine origin with various proportions of local meteoric water. Thermal waters of the site VI have considerably altered chemical and isotopic composition due to high temperatures of surrounding rocks. Base temperatures calculated for this area were 130-200°C. Coastal thermal springs affect isotopic composition of water throughout the bay.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent efforts to link the isotopic composition of snow in Greenland with meteorological and climatic parameters have indicated that relatively local information such as observed annual temperatures from coastal Greenland sites, as well as more synoptic scale features such as the North Atlantic Oscillation (NAO) and the temperature seesaw between Jakobshaven, Greenland, and Oslo, Norway, are significantly correlated with d18O and dD values from the past few hundred years measured in ice cores. In this study we review those efforts and then use a new record of isotope values from the Greenland Ice Sheet Project 2 and Greenland Ice Core Project sites at Summit, Greenland, to compare with meteorological and climatic parameters. This new record consists of six individual annually resolved isotopic records which have been average to produce a Summit stacked isotope record. The stacked record is significantly correlated with local Greenland temperatures over the past century (r=0.471), as well as a number of other records including temperatures and pressures from specific locations as well as temperature and pressure patterns such as the temperature seesaw and the North Atlantic Oscillation. A multiple linear regression of the stacked isotope record with a number of meteorological and climatic parameters in the North Atlantic region reveals that five variables contribute significantly to the variance in the isotope record: winter NAO, solar irradiance (as recorded by sunspot numbers), average Greenland coastal temperature, sea surface temperature in the moisture source region for Summit (30°-20°N), and the annual temperature seesaw between Jakobshaven and Oslo. Combined, these variables yield a correlation coefficient of r=0.71, explaining half of the variance in the stacked isotope record.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hide Intense debate persists about the climatic mechanisms governing hydrologic changes in tropical and subtropical southeast Africa since the Last Glacial Maximum, about 20,000 years ago. In particular, the relative importance of atmospheric and oceanic processes is not firmly established. Southward shifts of the intertropical convergence zone (ITCZ) driven by high-latitude climate changes have been suggested as a primary forcing, whereas other studies infer a predominant influence of Indian Ocean sea surface temperatures on regional rainfall changes. To address this question, a continuous record representing an integrated signal of regional climate variability is required, but has until now been missing. Here we show that remote atmospheric forcing by cold events in the northern high latitudes appears to have been the main driver of hydro-climatology in southeast Africa during rapid climate changes over the past 17,000 years. Our results are based on a reconstruction of precipitation and river discharge changes, as recorded in a marine sediment core off the mouth of the Zambezi River, near the southern boundary of the modern seasonal ITCZ migration. Indian Ocean sea surface temperatures did not exert a primary control over southeast African hydrologic variability. Instead, phases of high precipitation and terrestrial discharge occurred when the ITCZ was forced southwards during Northern Hemisphere cold events, such as Heinrich stadial 1 (around 16,000 years ago) and the Younger Dryas (around 12,000 years ago), or when local summer insolation was high in the late Holocene, i.e., during the last 4,000 years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon and hydrogen concentrations and isotopic compositions were measured in 19 samples from altered oceanic crust cored in ODP/IODP Hole 1256D through lavas, dikes down to the gabbroic rocks. Bulk water content varies from 0.32 to 2.14 wt% with dD values from -64per mil to -25per mil. All samples are enriched in water relative to fresh basalts. The dD values are interpreted in terms of mixing between magmatic water and another source that can be either secondary hydrous minerals and/or H contained in organic compounds such as hydrocarbons. Total CO2, extracted by step-heating technique, ranges between 564 and 2823 ppm with d13C values from -14.9per mil to -26.6per mil. As for water, these altered samples are enriched in carbon relative to fresh basalts. The carbon isotope compositions are interpreted in terms of a mixing between two components: (1) a carbonate with d13C = -4.5per mil and (2) an organic compound with d13C = -26.6per mil. A mixing model calculation indicates that, for most samples (17 of 19), more than 75% of the total C occurs as organic compounds while carbonates represent less than 25%. This result is also supported by independent estimates of carbonate content from CO2 yield after H3PO4 attack. A comparison between the carbon concentration in our samples, seawater DIC (Dissolved Inorganic Carbon) and DOC (Dissolved Organic Carbon), and hydrothermal fluids suggests that CO2 degassed from magmatic reservoirs is the main source of organic C addition to the crust during the alteration process. A reduction step of dissolved CO2 is thus required, and can be either biologically mediated or not. Abiotic processes are necessary for the deeper part of the crust (>1000 mbsf) because alteration temperatures are greater than any hyperthermophilic living organism (i.e. T > 110 °C). Even if not required, we cannot rule out the contribution of microbial activity in the low-temperature alteration zones. We propose a two-step model for carbon cycling during crustal alteration: (1) when "fresh" oceanic crust forms at or close to ridge axis, alteration starts with hot hydrothermal fluids enriched in magmatic CO2, leading to the formation of organic compounds during Fischer-Tropsch-type reactions; (2) when the crust moves away from the ridge axis, these interactions with hot hydrothermal fluids decrease and are replaced by seawater interactions with carbonate precipitation in fractures. Taking into account this organic carbon, we estimate C isotope composition of mean altered oceanic crust at ? -4.7per mil, similar to the d13C of the C degassed from the mantle at ridge axis, and discuss the global carbon budget. The total flux of C stored in the altered oceanic crust, as carbonate and organic compound, is 2.9 ± 0.4 * 10**12 molC/yr.