972 resultados para CT, Radiation Dose, Image Quality
Resumo:
Recent treatment planning studies have demonstrated the use of physiologic images in radiation therapy treatment planning to identify regions for functional avoidance. This image-guided radiotherapy (IGRT) strategy may reduce the injury and/or functional loss following thoracic radiotherapy. 4D computed tomography (CT), developed for radiotherapy treatment planning, is a relatively new imaging technique that allows the acquisition of a time-varying sequence of 3D CT images of the patient's lungs through the respiratory cycle. Guerrero et al. developed a method to calculate ventilation imaging from 4D CT, which is potentially better suited and more broadly available for IGRT than the current standard imaging methods. The key to extracting function information from 4D CT is the construction of a volumetric deformation field that accurately tracks the motion of the patient's lungs during the respiratory cycle. The spatial accuracy of the displacement field directly impacts the ventilation images; higher spatial registration accuracy will result in less ventilation image artifacts and physiologic inaccuracies. Presently, a consistent methodology for spatial accuracy evaluation of the DIR transformation is lacking. Evaluation of the 4D CT-derived ventilation images will be performed to assess correlation with global measurements of lung ventilation, as well as regional correlation of the distribution of ventilation with the current clinical standard SPECT. This requires a novel framework for both the detailed assessment of an image registration algorithm's performance characteristics as well as quality assurance for spatial accuracy assessment in routine application. Finally, we hypothesize that hypo-ventilated regions, identified on 4D CT ventilation images, will correlate with hypo-perfused regions in lung cancer patients who have obstructive lesions. A prospective imaging trial of patients with locally advanced non-small-cell lung cancer will allow this hypothesis to be tested. These advances are intended to contribute to the validation and clinical implementation of CT-based ventilation imaging in prospective clinical trials, in which the impact of this imaging method on patient outcomes may be tested.
Resumo:
PURPOSE Patients with biochemical failure (BF) after radical prostatectomy may benefit from dose-intensified salvage radiation therapy (SRT) of the prostate bed. We performed a randomized phase III trial assessing dose intensification. PATIENTS AND METHODS Patients with BF but without evidence of macroscopic disease were randomly assigned to either 64 or 70 Gy. Three-dimensional conformal radiation therapy or intensity-modulated radiation therapy/rotational techniques were used. The primary end point was freedom from BF. Secondary end points were acute toxicity according to the National Cancer Institute Common Terminology Criteria for Adverse Events (version 4.0) and quality of life (QoL) according to the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaires C30 and PR25. RESULTS Three hundred fifty patients were enrolled between February 2011 and April 2014. Three patients withdrew informed consent, and three patients were not eligible, resulting in 344 patients age 48 to 75 years in the safety population. Thirty patients (8.7%) had grade 2 and two patients (0.6%) had grade 3 genitourinary (GU) baseline symptoms. Acute grade 2 and 3 GU toxicity was observed in 22 patients (13.0%) and one patient (0.6%), respectively, with 64 Gy and in 29 patients (16.6%) and three patients (1.7%), respectively, with 70 Gy (P = .2). Baseline grade 2 GI toxicity was observed in one patient (0.6%). Acute grade 2 and 3 GI toxicity was observed in 27 patients (16.0%) and one patient (0.6%), respectively, with 64 Gy, and in 27 patients (15.4%) and four patients (2.3%), respectively, with 70 Gy (P = .8). Changes in early QoL were minor. Patients receiving 70 Gy reported a more pronounced and clinically relevant worsening in urinary symptoms (mean difference in change score between arms, 3.6; P = .02). CONCLUSION Dose-intensified SRT was associated with low rates of acute grade 2 and 3 GU and GI toxicity. The impact of dose-intensified SRT on QoL was minor, except for a significantly greater worsening in urinary symptoms.
Resumo:
La planificación pre-operatoria se ha convertido en una tarea esencial en cirugías y terapias de marcada complejidad, especialmente aquellas relacionadas con órgano blando. Un ejemplo donde la planificación preoperatoria tiene gran interés es la cirugía hepática. Dicha planificación comprende la detección e identificación precisa de las lesiones individuales y vasos así como la correcta segmentación y estimación volumétrica del hígado funcional. Este proceso es muy importante porque determina tanto si el paciente es un candidato adecuado para terapia quirúrgica como la definición del abordaje a seguir en el procedimiento. La radioterapia de órgano blando es un segundo ejemplo donde la planificación se requiere tanto para la radioterapia externa convencional como para la radioterapia intraoperatoria. La planificación comprende la segmentación de tumor y órganos vulnerables y la estimación de la dosimetría. La segmentación de hígado funcional y la estimación volumétrica para planificación de la cirugía se estiman habitualmente a partir de imágenes de tomografía computarizada (TC). De igual modo, en la planificación de radioterapia, los objetivos de la radiación se delinean normalmente sobre TC. Sin embargo, los avances en las tecnologías de imagen de resonancia magnética (RM) están ofreciendo progresivamente ventajas adicionales. Por ejemplo, se ha visto que el ratio de detección de metástasis hepáticas es significativamente superior en RM con contraste Gd–EOB–DTPA que en TC. Por tanto, recientes estudios han destacado la importancia de combinar la información de TC y RM para conseguir el mayor nivel posible de precisión en radioterapia y para facilitar una descripción precisa de las lesiones del hígado. Con el objetivo de mejorar la planificación preoperatoria en ambos escenarios se precisa claramente de un algoritmo de registro no rígido de imagen. Sin embargo, la gran mayoría de sistemas comerciales solo proporcionan métodos de registro rígido. Las medidas de intensidad de voxel han demostrado ser criterios de similitud de imágenes robustos, y, entre ellas, la Información Mutua (IM) es siempre la primera elegida en registros multimodales. Sin embargo, uno de los principales problemas de la IM es la ausencia de información espacial y la asunción de que las relaciones estadísticas entre las imágenes son homogéneas a lo largo de su domino completo. La hipótesis de esta tesis es que la incorporación de información espacial de órganos al proceso de registro puede mejorar la robustez y calidad del mismo, beneficiándose de la disponibilidad de las segmentaciones clínicas. En este trabajo, se propone y valida un esquema de registro multimodal no rígido 3D usando una nueva métrica llamada Información Mutua Centrada en el Órgano (Organ-Focused Mutual Information metric (OF-MI)) y se compara con la formulación clásica de la Información Mutua. Esto permite mejorar los resultados del registro en áreas problemáticas incorporando información regional al criterio de similitud, beneficiándose de la disponibilidad real de segmentaciones en protocolos estándares clínicos, y permitiendo que la dependencia estadística entre las dos modalidades de imagen difiera entre órganos o regiones. El método propuesto se ha aplicado al registro de TC y RM con contraste Gd–EOB–DTPA así como al registro de imágenes de TC y MR para planificación de radioterapia intraoperatoria rectal. Adicionalmente, se ha desarrollado un algoritmo de apoyo de segmentación 3D basado en Level-Sets para la incorporación de la información de órgano en el registro. El algoritmo de segmentación se ha diseñado específicamente para la estimación volumétrica de hígado sano funcional y ha demostrado un buen funcionamiento en un conjunto de imágenes de TC abdominales. Los resultados muestran una mejora estadísticamente significativa de OF-MI comparada con la Información Mutua clásica en las medidas de calidad de los registros; tanto con datos simulados (p<0.001) como con datos reales en registro hepático de TC y RM con contraste Gd– EOB–DTPA y en registro para planificación de radioterapia rectal usando OF-MI multi-órgano (p<0.05). Adicionalmente, OF-MI presenta resultados más estables con menor dispersión que la Información Mutua y un comportamiento más robusto con respecto a cambios en la relación señal-ruido y a la variación de parámetros. La métrica OF-MI propuesta en esta tesis presenta siempre igual o mayor precisión que la clásica Información Mutua y consecuentemente puede ser una muy buena alternativa en aplicaciones donde la robustez del método y la facilidad en la elección de parámetros sean particularmente importantes. Abstract Pre-operative planning has become an essential task in complex surgeries and therapies, especially for those affecting soft tissue. One example where soft tissue preoperative planning is of high interest is liver surgery. It involves the accurate detection and identification of individual liver lesions and vessels as well as the proper functional liver segmentation and volume estimation. This process is very important because it determines whether the patient is a suitable candidate for surgical therapy and the type of procedure. Soft tissue radiation therapy is a second example where planning is required for both conventional external and intraoperative radiotherapy. It involves the segmentation of the tumor target and vulnerable organs and the estimation of the planned dose. Functional liver segmentations and volume estimations for surgery planning are commonly estimated from computed tomography (CT) images. Similarly, in radiation therapy planning, targets to be irradiated and healthy and vulnerable tissues to be protected from irradiation are commonly delineated on CT scans. However, developments in magnetic resonance imaging (MRI) technology are progressively offering advantages. For instance, the hepatic metastasis detection rate has been found to be significantly higher in Gd–EOB–DTPAenhanced MRI than in CT. Therefore, recent studies highlight the importance of combining the information from CT and MRI to achieve the highest level of accuracy in radiotherapy and to facilitate accurate liver lesion description. In order to improve those two soft tissue pre operative planning scenarios, an accurate nonrigid image registration algorithm is clearly required. However, the vast majority of commercial systems only provide rigid registration. Voxel intensity measures have been shown to be robust measures of image similarity, and among them, Mutual Information (MI) is always the first candidate in multimodal registrations. However, one of the main drawbacks of Mutual Information is the absence of spatial information and the assumption that statistical relationships between images are the same over the whole domain of the image. The hypothesis of the present thesis is that incorporating spatial organ information into the registration process may improve the registration robustness and quality, taking advantage of the clinical segmentations availability. In this work, a multimodal nonrigid 3D registration framework using a new Organ- Focused Mutual Information metric (OF-MI) is proposed, validated and compared to the classical formulation of the Mutual Information (MI). It allows improving registration results in problematic areas by adding regional information into the similitude criterion taking advantage of actual segmentations availability in standard clinical protocols and allowing the statistical dependence between the two modalities differ among organs or regions. The proposed method is applied to CT and T1 weighted delayed Gd–EOB–DTPA-enhanced MRI registration as well as to register CT and MRI images in rectal intraoperative radiotherapy planning. Additionally, a 3D support segmentation algorithm based on Level-Sets has been developed for the incorporation of the organ information into the registration. The segmentation algorithm has been specifically designed for the healthy and functional liver volume estimation demonstrating good performance in a set of abdominal CT studies. Results show a statistical significant improvement of registration quality measures with OF-MI compared to MI with both simulated data (p<0.001) and real data in liver applications registering CT and Gd–EOB–DTPA-enhanced MRI and in registration for rectal radiotherapy planning using multi-organ OF-MI (p<0.05). Additionally, OF-MI presents more stable results with smaller dispersion than MI and a more robust behavior with respect to SNR changes and parameters variation. The proposed OF-MI always presents equal or better accuracy than the classical MI and consequently can be a very convenient alternative within applications where the robustness of the method and the facility to choose the parameters are particularly important.
Resumo:
As complex radiotherapy techniques become more readily-practiced, comprehensive 3D dosimetry is a growing necessity for advanced quality assurance. However, clinical implementation has been impeded by a wide variety of factors, including the expense of dedicated optical dosimeter readout tools, high operational costs, and the overall difficulty of use. To address these issues, a novel dry-tank optical CT scanner was designed for PRESAGE 3D dosimeter readout, relying on 3D printed components and omitting costly parts from preceding optical scanners. This work details the design, prototyping, and basic commissioning of the Duke Integrated-lens Optical Scanner (DIOS).
The convex scanning geometry was designed in ScanSim, an in-house Monte Carlo optical ray-tracing simulation. ScanSim parameters were used to build a 3D rendering of a convex ‘solid tank’ for optical-CT, which is capable of collimating a point light source into telecentric geometry without significant quantities of refractive-index matched fluid. The model was 3D printed, processed, and converted into a negative mold via rubber casting to produce a transparent polyurethane scanning tank. The DIOS was assembled with the solid tank, a 3W red LED light source, a computer-controlled rotation stage, and a 12-bit CCD camera. Initial optical phantom studies show negligible spatial inaccuracies in 2D projection images and 3D tomographic reconstructions. A PRESAGE 3D dose measurement for a 4-field box treatment plan from Eclipse shows 95% of voxels passing gamma analysis at 3%/3mm criteria. Gamma analysis between tomographic images of the same dosimeter in the DIOS and DLOS systems show 93.1% agreement at 5%/1mm criteria. From this initial study, the DIOS has demonstrated promise as an economically-viable optical-CT scanner. However, further improvements will be necessary to fully develop this system into an accurate and reliable tool for advanced QA.
Pre-clinical animal studies are used as a conventional means of translational research, as a midpoint between in-vitro cell studies and clinical implementation. However, modern small animal radiotherapy platforms are primitive in comparison with conventional linear accelerators. This work also investigates a series of 3D printed tools to expand the treatment capabilities of the X-RAD 225Cx orthovoltage irradiator, and applies them to a feasibility study of hippocampal avoidance in rodent whole-brain radiotherapy.
As an alternative material to lead, a novel 3D-printable tungsten-composite ABS plastic, GMASS, was tested to create precisely-shaped blocks. Film studies show virtually all primary radiation at 225 kVp can be attenuated by GMASS blocks of 0.5cm thickness. A state-of-the-art software, BlockGen, was used to create custom hippocampus-shaped blocks from medical image data, for any possible axial treatment field arrangement. A custom 3D printed bite block was developed to immobilize and position a supine rat for optimal hippocampal conformity. An immobilized rat CT with digitally-inserted blocks was imported into the SmART-Plan Monte-Carlo simulation software to determine the optimal beam arrangement. Protocols with 4 and 7 equally-spaced fields were considered as viable treatment options, featuring improved hippocampal conformity and whole-brain coverage when compared to prior lateral-opposed protocols. Custom rodent-morphic PRESAGE dosimeters were developed to accurately reflect these treatment scenarios, and a 3D dosimetry study was performed to confirm the SmART-Plan simulations. Measured doses indicate significant hippocampal sparing and moderate whole-brain coverage.
Resumo:
In radiotherapy planning, computed tomography (CT) images are used to quantify the electron density of tissues and provide spatial anatomical information. Treatment planning systems use these data to calculate the expected spatial distribution of absorbed dose in a patient. CT imaging is complicated by the presence of metal implants which cause increased image noise, produce artifacts throughout the image and can exceed the available range of CT number values within the implant, perturbing electron density estimates in the image. Furthermore, current dose calculation algorithms do not accurately model radiation transport at metal-tissue interfaces. Combined, these issues adversely affect the accuracy of dose calculations in the vicinity of metal implants. As the number of patients with orthopedic and dental implants grows, so does the need to deliver safe and effective radiotherapy treatments in the presence of implants. The Medical Physics group at the Cancer Centre of Southeastern Ontario and Queen's University has developed a Cobalt-60 CT system that is relatively insensitive to metal artifacts due to the high energy, nearly monoenergetic Cobalt-60 photon beam. Kilovoltage CT (kVCT) images, including images corrected using a commercial metal artifact reduction tool, were compared to Cobalt-60 CT images throughout the treatment planning process, from initial imaging through to dose calculation. An effective metal artifact reduction algorithm was also implemented for the Cobalt-60 CT system. Electron density maps derived from the same kVCT and Cobalt-60 CT images indicated the impact of image artifacts on estimates of photon attenuation for treatment planning applications. Measurements showed that truncation of CT number data in kVCT images produced significant mischaracterization of the electron density of metals. Dose measurements downstream of metal inserts in a water phantom were compared to dose data calculated using CT images from kVCT and Cobalt-60 systems with and without artifact correction. The superior accuracy of electron density data derived from Cobalt-60 images compared to kVCT images produced calculated dose with far better agreement with measured results. These results indicated that dose calculation errors from metal image artifacts are primarily due to misrepresentation of electron density within metals rather than artifacts surrounding the implants.
Resumo:
The quality of the image of 18F-FDG PET/CT scans in overweight patients is commonly degraded. This study evaluates, retrospectively, the relation between SNR, weight and dose injected in 65 patients, with a range of weights from 35 to 120 kg, with scans performed using the Biograph mCT using a standardized protocol in the Nuclear Medicine Department at Radboud University Medical Centre in Nijmegen, The Netherlands. Five ROI’s were made in the liver, assumed to be an organ of homogenous metabolism, at the same location, in five consecutive slices of the PET/CT scans to obtain the mean uptake (signal) values and its standard deviation (noise). The ratio of both gave us the Signal-to- Noise Ratio in the liver. With the help of a spreadsheet, weight, height, SNR and Body Mass Index were calculated and graphs were designed in order to obtain the relation between these factors. The graphs showed that SNR decreases as the body weight and/or BMI increased and also showed that, even though the dose injected increased, the SNR also decreased. This is due to the fact that heavier patients receive higher dose and, as reported, heavier patients have less SNR. These findings suggest that the quality of the images, measured by SNR, that were acquired in heavier patients are worst than thinner patients, even though higher FDG doses are given. With all this taken in consideration, it was necessary to make a new formula to calculate a new dose to give to patients and having a good and constant SNR in every patient. Through mathematic calculations, it was possible to reach to two new equations (power and exponential), which would lead to a SNR from a scan made with a specific reference weight (86 kg was the considered one) which was independent of body mass. The study implies that with these new formulas, patients heavier than the reference weight will receive higher doses and lighter patients will receive less doses. With the median being 86 kg, the new dose and new SNR was calculated and concluded that the quality of the image remains almost constant as the weight increases and the quantity of the necessary FDG remains almost the same, without increasing the costs for the total amount of FDG used in all these patients.
Resumo:
Mestrado em Radioterapia.
Resumo:
Mestrado em Radiações Aplicadas às Tecnologias da Saúde.
Resumo:
The increasing use of ionizing radiation for medical purposes emphasizes the concern about safety and justification of using ionizing radiation. This is linked with the use of new and high-dose X-ray technology (particularly CT). According to the UNSCEAR 2010 Report the total number of diagnostic medical examinations (both medical and dental) is estimated to have risen from 2.4 billion (period 1991–1996) to 3.6 billion (period 1997– 2008) - a marked increase in collective doses. An appropriate use of technology aiming diagnostic or therapy and respecting the ALARA principle is a mandatory requisite to safely perform any radiological procedure. Radiation protection is thus, a concern of all specialists in the radiology field ( radiologists, radiographers, medical physicists, among other professional groups). The importance of education and training of these professionals in reducing patients’ doses while maintaining the desired level of quality in medical exposures, as well as precise therapeutic treatments is well recognized. Education, training and continuing professional development (CPD) constitute a triad pointing towards the radiographers’ development of competences in the radiation protection field. This presentation excludes the radiographer role and competences in the fields of ultrasonography and MRI.
Resumo:
Mestrado em Radiações Aplicadas às Tecnologias da Saúde - Ramo de especialização: Terapia com Radiações
Resumo:
Objective - Evaluate preventable exposure dose in routine chest CT examinations beyond prescribed anatomical landmarks and estimate extra dose delivered to the patient. Background/rationale - Recent technical advances have greatly increased the clinical applications of CT; developments in multidetector-row CT (MDCT) technology have occurred; the major disadvantage with the increased use of MDCT is associated radiation exposure.
Resumo:
RESUMO - A preocupação com os conhecimentos, atitudes, crenças e práticas, no que concerne à utilização de radiações ionizantes para fins de diagnóstico, e a sensibilização de todos os agentes envolvidos, médicos, técnicos, físicos, utentes e responsáveis pela Saúde Publica, relativamente aos níveis de radiação emitida nos exames de Tomografia Computorizada (TC), assume particular importância no domínio da Saúde Pública, na medida em que é necessário influenciar o desenvolvimento de práticas que promovam, auditem e garantam a prestação do controlo da qualidade radiológica e dosimétrica nos serviços de Radiologia a nível Nacional. Para tal, e no âmbito da publicação de estudos já realizados ao nível da União Europeia, ―Orientações Europeias dos Critérios de Qualidade para a Tomografia Computorizada (1999) ‖, é proposto estabelecer orientações na realização de estudos que permitam, numa primeira fase, estabelecer a comparação com os resultados obtidos pelos mecanismos de Controlo da Qualidade (CQ), analisar e proceder aos ajustes (se necessário) e, numa segunda fase, implementar uma moldura sistemática de avaliação periódica dos níveis de dose de radiação por exame TC e que permita a monitorização dos dados. Nesse sentido, propõe-se a realização de um Estudo Nacional que envolva a rede hospitalar pública, privada e universitária, partindo da metodologia utilizada em estudos prévios noutros países da Europa, como seja, selecção do equipamento de TC existente na Instituição Hospitalar, onde serão reunidas informações através do preenchimento de questionários relativos ao equipamento a utilizar. Serão recolhidos dados relativos ao utente, ao equipamento e parâmetros de aquisição de imagem, que permitam identificar os níveis de referência de diagnóstico (NRD) em TC, na realidade Portuguesa. Foi efectuado um estudo piloto numa instituição EPE e os valores obtidos não são significativos, nem podem assumir valor preditivo dado o reduzido tamanho da amostra. Apesar disso, sugerem a existência de parâmetros que podem ser alterados e com isso podem fazer variar a dose de radiação utilizada. ENSP/UNL Maria de Fátima Vaz de Carvalho 5 Espera-se obter com este estudo, como foi referido, a base do estabelecimento dos NRD em TC em Portugal. ----------------- ABSTRACT - The purpose of this study, in an empirical point of view, emerges from concern with the knowledge, attitudes, beliefs and practices regarding the use of ionizing radiation for diagnostic purposes and awareness of all actors involved, medical physical, technical, and responsible public health for the development of practices that promote, audited and ensure the provision of radiological quality control and dosing in radiology service at national level. In view of the complexity and characteristics involved in relation to ionizing radiation, all assume their part in protecting the physical integrity of each user and a global perspective, to ensure the safeguarding of public health, while global and globalizing factor. To this end, and in the context of the publication of studies already carried out at European Union level, "European guidelines for quality criteria for computed tomography", it is proposed to establish guidelines in conducting studies to initially establish the comparison with the results obtained by QC and make adjustments if necessary, and subsequently implement a systematic periodic assessment frame that allows monitoring of data. Accordingly, it is proposed to conduct a national study involving the public network, private and University hospitals, that extends from the methodology used in previous studies in other countries of Europe, as is, selection of equipment of existing CT in Hospital Institution, where information will be gathered by filling out questionnaires concerning the equipment to be used. Data will be collected for the wearer, equipment and parameters of image acquisition, identifying diagnostic reference levels (NRD) in CT in Portuguese fact. A pilot study was carried out in an institution EPE and the values obtained are not significant, nor can they take predictive value given the small sample size. Despite this, suggest the existence of parameters that can be changed and this can vary the dose of radiation used It is hoped to get with this study, as mentioned, the basis of the establishment of NRD in CT in Portugal.
Resumo:
INTRODUCTION: EORTC trial 22991 was designed to evaluate the addition of concomitant and adjuvant short-term hormonal treatments to curative radiotherapy in terms of disease-free survival for patients with intermediate risk localized prostate cancer. In order to assess the compliance to the 3D conformal radiotherapy protocol guidelines, all participating centres were requested to participate in a dummy run procedure. An individual case review was performed for the largest recruiting centres as well. MATERIALS AND METHODS: CT-data of an eligible prostate cancer patient were sent to 30 centres including a description of the clinical case. The investigator was requested to delineate the volumes of interest and to perform treatment planning according to the protocol. Thereafter, the investigators of the 12 most actively recruiting centres were requested to provide data on five randomly selected patients for an individual case review. RESULTS: Volume delineation varied significantly between investigators. Dose constraints for organs at risk (rectum, bladder, hips) were difficult to meet. In the individual case review, no major protocol deviations were observed, but a number of dose reporting problems were documented for centres using IMRT. CONCLUSIONS: Overall, results of this quality assurance program were satisfactory. The efficacy of the combination of a dummy run procedure with an individual case review is confirmed in this study, as none of the evaluated patient files harboured a major protocol deviation. Quality assurance remains a very important tool in radiotherapy to increase the reliability of the trial results. Special attention should be given when designing quality assurance programs for more complex irradiation techniques.