954 resultados para COBALT STEARATE
Resumo:
One of the key hindrances on development of solid catalysts containing cobalt species for partial oxidation of organic molecules at mild conditions in conventional liquid phase is the severe metal leaching. The leached soluble Co species with a higher degree of freedom always out-performs those of solid supported Co species in oxidation catalysis. However, the homogeneous Co species concomitantly introduces separation problems. We have recently reponed for the first time, a new oxidation catalyst system for the oxidation of organic molecules in supercritical CO2 using the principle of micellar catalysis. [CF3(CF2)(8)COO](2)Co.xH(2)O (the fluorinated anionic moiety forms aqueous reverse micelles carrying water-soluble Co2+ cations in scCO(2)) was previously shown to be extremely active for the oxidation of toluene in the presence of sodium bromide in water-CO2 mixture, giving 98% conversion and 99% selectivity to benzoic acid at 120 degreesC. In this study, we show that the effects of varying the type of surfactant counterions and the length of the surfactant chains on catalysis. It is found that the use of [CF3(CF2)(8)COO](2)Mg.yH(2)O/Co(II) acetate is as effective as the [CF3(CF2)(8)COO](2)Co.xH(2)O and the fluorinated chain length used has a subtle effect on the catalytic rate measured. It is also demonstrated that this new type of micellar catalyst in scCO(2) can be easily separated via CO2 depressurisation and be reused without noticeable deactivation. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
coating composition comprising an oxidatively drying coating binder and a chelate comprising at least one group according to the following formula (I): forming a complex with a metal ion, A1 and A2 both being an aromatic residue, R1 and R3 being covalently bonded groups, and R2 being a divalent organic radical, wherein at least one solubilizing group is coivalently bonded to the chelating compound. The solubilizing group is a non-polar group, preferable an aliphatic group having at least four carbon atoms, covalently bonded to A1 and/or A2. The metal ion is a divalent ion of a metal selected from the group of manganese, cobalt, copper, lead, zirconium, iron, lanthanium, cerium, vanadium, and clacium or a trivalent ion of a metal selected from the group of manganese, cobalt, lead, zirconium, iron, lanthanium, cerium, and vanadium, combined with a monovalent counterion.
Resumo:
An important part of strategic planning’s purpose should be to attempt to forecast the future, not simply to belatedly respond to events, or accept the future as inevitable. This paper puts forward a conceptual approach for seeking to achieve these aims and uses the Bournemouth and Poole area in Dorset as a vehicle for applying the basic methodology. The area has been chosen because of the significant issues that it currently faces in planning terms; and its future development possibilities. In order that alternative future choices for the area – different ‘developmental trajectories’ – can be evaluated, they must be carefully and logically constructed. Four Futures for Bournemouth/Poole have been put forward; they are titled and colour-coded: Future One is Maximising Growth – Golden Prospect which seeks to achieve the highest level of economic prosperity of the area; Future Two is Incremental Growth – Solid Silver which attempts to facilitate a steady, continuing, controlled pattern of the development for the area; Future Three is Steady State – Cobalt Blue which suggests that people in the area could be more concerned with preserving their quality of life in terms of their leisure and recreation rather than increasing wealth; Future Four is Environment First – Jade Green which makes the area’s environmental protection its top priority even at the possible expense of economic prosperity. The scenarios proposed here are not sacrosanct. Nor are they simply confined to the Bournemouth and Poole area. In theory, suitably modified, they could use in a variety of different contexts. Consideration of the scenarios – wherever located - might then generate other, additional scenarios. These are called hybrids, alloys and amalgams. Likewise it might identify some of them as inappropriate or impossible. Most likely, careful consideration of the scenarios will suggest hybrid scenarios, in which features from different scenarios are combined to produce alternative or additional futures for consideration. The real issue then becomes how best to fashion such a future for the particular area under consideration
Resumo:
The mammalian bradykinin-degrading enzyme aminopeptidase P (AP-P; E. C. 3.4.11.9) is a metal-dependent enzyme and is a member of the peptidase clan MG. AP-P exists as membrane-bound and cytosolic forms, which represent distinct gene products. A partially truncated clone encoding the cytosolic form was obtained from a human pancreatic cDNA library and the 5' region containing the initiating Met was obtained by 5' rapid accumulation of cDNA ends (RACE). The open reading frame encodes a protein of 623 amino acids with a calculated molecular mass of 69,886 Da. The full-length cDNA with a C-terminal hexahistidine tag was expressed in Escherichia coli and COS-1 cells and migrated on SDS-PAGE with a molecular mass of 71 kDa. The expressed cytosolic AP-P hydrolyzed the X-Pro bond of bradykinin and substance P but did not hydrolyze Gly-Pro-hydroxyPro. Hydrolysis of bradykinin was inhibited by 1,10-phenanthroline and by the specific inhibitor of the membrane-bound form of mammalian AP-P, apstatin. Inductively coupled plasma atomic emission spectroscopy of AP-P expressed in E. coli revealed the presence of 1 mol of manganese/mol of protein and insignificant amounts of cobalt, iron, and zinc. The enzymatic activity of AP-P was promoted in the presence of Mn(II), and this activation was increased further by the addition of glutathione. The only other metal ion to cause slight activation of the enzyme was Co(II), with Ca(II), Cu(II), Mg(II), Ni(II), and Zn(II) all being inhibitory. Removal of the metal ion from the protein was achieved by treatment with 1,10-phenanthroline. The metal-free enzyme was reactivated by the addition of Mn(II) and, partially, by Fe(II). Neither Co(II) nor Zn(II) reactivated the metal-free enzyme. On the basis of these data we propose that human cytosolic AP-P is a single metal ion-dependent enzyme and that manganese is most likely the metal ion used in vivo.
Resumo:
Glutamate uptake by astrocytes is fundamentally important in the regulation of CNS function. Disruption of uptake can lead to excitotoxicity and is implicated in various neurodegenerative processes as well as a consequence of hypoxic/ischemic events. Here, we investigate the effect of hypoxia on activity and expression of the key glutamate transporters excitatory amino acid transporter 1 (EAAT1) [GLAST (glutamate-aspartate transporter)] and EAAT2 [GLT-1 (glutamate transporter 1)]. Electrogenic, Na+-dependent glutamate uptake was monitored via whole-cell patch-clamp recordings from cortical astrocytes. Under hypoxic conditions (2.5 and 1% O2 exposure for 24 h), glutamate uptake was significantly reduced, and pharmacological separation of uptake transporter subtypes suggested that the EAAT2 subtype was preferentially reduced relative to the EAAT1. This suppression was confirmed at the level of EAAT protein expression (via Western blots) and mRNA levels (via real-time PCR). These effects of hypoxia to inhibit glutamate uptake current and EAAT protein levels were not replicated by desferrioxamine, cobalt, FG0041, or FG4496, agents known to mimic effects of hypoxia mediated via the transcriptional regulator, hypoxia-inducible factor (HIF). Furthermore, the effects of hypoxia were not prevented by topotecan, which prevents HIF accumulation. In stark contrast, inhibition of nuclear factor-kappaB (NF-kappaB) with SN50 fully prevented the effects of hypoxia on glutamate uptake and EAAT expression. Our results indicate that prolonged hypoxia can suppress glutamate uptake in astrocytes and that this effect requires activation of NF-kappaB but not of HIF. Suppression of glutamate uptake via this mechanism may be an important contributory factor in hypoxic/ischemic triggered glutamate excitotoxicity.
Resumo:
Marine and terrestrial sediments of the Valanginian age display a distinct positive δ13C excursion, which has recently been interpreted as the expression of an oceanic anoxic episode (OAE) of global importance. Here we evaluate the extent of anaerobic conditions in marine bottom waters and explore the mechanisms involved in changing carbon storage on a global scale during this time interval. We asses redox-sensitive trace-element distributions (RSTE; uranium, vanadium, cobalt, arsenic and molybdenum) and the quality and quantity of preserved organic matter (OM) in representative sections along a shelf-basin transect in the western Tethys, in the Polish Basin and on Shatsky Rise. OM-rich layers corresponding in time to the δ13C shift are generally rare in the Tethyan sections and if present, the layers are not thicker than several centimetres and total organic carbon (TOC) contents do not surpass 1.68 wt..%. Palynological observations and geochemical properties of the preserved OM suggest a mixed marine and terrestrial origin and deposition in an oxic environment. In the Polish Basin, OM-rich layers show evidence for an important continental component. RSTE exhibit no major enrichments during the δ13C excursion in all studied Tethyan sections. RSTE enrichments are, however, observed in the pre-δ13C excursion OM-rich “Barrande” levels of the Vocontian Trough. In addition, all Tethyan sections record higher Mn contents during the δ13C shift, indicating rather well-oxygenated bottom waters in the western Tethys and the presence of anoxic basins elsewhere, such as the restricted basins of the North Atlantic and Weddell Sea. We propose that the Valanginian δ13C shift is the consequence of a combination of increased OM storage in marginal seas and on continents (as a sink of 12C-enriched organic carbon), coupled with the demise of shallow-water carbonate platforms (diminishing the storage capacity of 13C-enriched carbonate carbon). As such the Valanginian provides a more faithful natural analogue to present-day environmental change than most other Mesozoic OAEs, which are characterized by the development of ocean-wide dysaerobic to anaerobic conditions.
Resumo:
The magnetoviscous effect, change in viscosity with change in magnetic field strength, and the anisotropy of magnetoviscous effect, change in viscosity with orientation of magnetic field, have been a focus of interest since four decades. A satisfactory understanding of the microscopic origin of anisotropy of magnetoviscous effect in magnetic fluids is still a matter of debate and a field of intense research. Here, we present an extensive simulation study to understand the relation between the anisotropy of magnetoviscous effect and the underlying change in micro-structures of ferrofluids. Our results indicate that field-induced chain-like structures respond very differently depending on their orientation relative to the direction of an externally applied shear flow, which leads to a pronounced anisotropy of viscosity. In this work, we focus on three exemplary values of dipolar interaction strengths which correspond to weak, intermediate and strong interactions between dipolar colloidal particles. We compare our simulation results with an experimental study on cobalt-based ferrofluids as well as with an existing theoretical model called the chain model. A non-monotonic behaviour in the anisotropy of magnetoviscous effect is observed with increasing dipolar interaction strength and is explained in terms of micro-structure formation.
Resumo:
Variable-temperature powder neutron diffraction data reveal that Co3Sn2S2 crystallizes in the shandite structure (space group R (3) over barm, a = 5.36855(3)angstrom, c = 13.1903(1) angstrom at 300 K). The structural relationship between Co3Sn2S2 and the intermetallic compound CoSn, both of which contain Kagome nets of cobalt atoms, is discussed. Resistivity and Seebeck coefficient measurements for Co3Sn2S2 are consistent with metallic behaviour. Magnetic susceptibility measurements indicate that Co3Sn2S2 orders ferromagnetically at 180(10) K, with a saturation moment of 0.29 mu(B) per cobalt atom at 5 K. The onset of magnetic ordering is accompanied by marked anomalies in the electrical transport properties. (c) 2008 Elsevier Masson SAS. All rights reserve
Resumo:
An inappropriate prosthetic fit could cause stress over the interface implant/bone. The objective of this study was to compare stresses transmitted to implants from frameworks cast using different materials and to investigate a possible correlation between vertical misfits and these stresses. Fifteen one-piece cast frameworks simulating bars for fixed prosthesis in a model with five implants were fabricated and arranged into three different groups according to the material used for casting: CP Ti (commercially pure titanium), Co-Cr (cobalt-chromium) or Ni-Cr-Ti (nickel-chromium-titanium) alloys. Each framework was installed over the metal model with all screws tightened to a 10 N cm torque and then, vertical misfits were measured using an optical microscope. The stresses transmitted to implants were measured using quantitative photoelastic analysis in values of maximum shear stress (T), when each framework was tightened to the photoelastic model to a 10 N cm standardized torque. Stress data were statistically analyzed using one-way ANOVA and Tukey`s test and correlation tests were performed using Pearson`s rank correlation (alpha = 0.05). Mean and standard deviation values of vertical misfit are presented for CP Ti (22.40 +/- 9.05 mu m), Co-Cr (66.41 +/- 35.47 mu m) and Ni-Cr-Ti (32.20 +/- 24.47 mu m). Stresses generated by Co-Cr alloy (tau = 7.70 +/- 2.16 kPa) were significantly higher than those generated by CP Ti (tau = 5.86 +/- 1.55 kPa, p = 0.018) and Ni-Cr-Ti alloy (tau =5.74 +/- 3.05 kPa, p = 0.011), which were similar (p = 0.982). Correlations between vertical misfits and stresses around the implants were not significant as for any evaluated materials. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A synthetic version of the metal-regulated gene A (mrgA) promoter from Bacillus subtilis, which in this Gram-positive bacterium is negatively regulated by manganese, iron, cobalt, or copper turned out to promote high level of basal gene expression that is further enhanced by Co(II), Cd(II), Mn(II), Zn(II), Cu(II), or Ni(II), when cloned in the Gram-negative bacterium Cupriavidus metallidurans. Promoter activity was monitored by expression of the reporter gene coding for the enhanced green fluorescent protein (EGFP), and cellular intensity fluorescence was quantified by flow cytometry. Expression levels in C. metallidurans driven by the heterologous promoter, here called pan, ranged from 20- to 53-fold the expression level driven by the Escherichia coli lac promoter (which is constitutively expressed in C. metallidurans), whether in the absence or presence of metal ions, respectively. The pan promoter did also function in E. coli in a constitutive pattern, regardless of the presence of Mn(II) or Fe(II). In conclusion, the pan promoter proved to be a powerful tool to express heterologous proteins in Gram-negative bacteria, especially in C. metallidurans grown upon high levels of toxic metals, with potential applications in bioremediation. Biotechnol. Bioeng. 2010; 107: 469-477. (C) 2010 Wiley Periodicals, Inc.
Resumo:
In this study, Cu(II) complexes with fluorinated ligands were produced aiming at the development of new, less toxic antileishmanial metallodrugs. Complexes of the general formula CuL(2) (L = lactate, trifluorolactate, 2-hydroxyisobutyrate, trifluoro-2-hydroxyisobutyrate) were synthesized in methanolic medium, purified by crystallization and characterized by elemental analysis and electronic and infrared spectroscopies. In vitro experiments with Leishmania amazonensis promastigotes showed that the trifluorolactate derivative more active than its non-fluorinated counterpart. Our results indicate that fluorinated chelators may be interesting to increase metal toxicity and/or open new paths for metallodrug chemotherapy against leishmaniasis.
Resumo:
In this work, we report on the magnetic properties of nickel nanoparticles (NP) in a SiO(2)-C thin film matrix, prepared by a polymeric precursor method, with Ni content x in the 0-10 wt% range. Microstructural analyses of the films showed that the Ni NP are homogenously distributed in the SiO(2)-C matrix and have spherical shape with average diameter of similar to 10 nm. The magnetic properties reveal features of superparamagnetism with blocking temperatures T (B) similar to 10 K. The average diameter of the Ni NP, estimated from magnetization measurements, was found to be similar to 4 nm for the x = 3 wt% Ni sample, in excellent agreement with X-ray diffraction data. M versus H hysteresis loops indicated that the Ni NP are free from a surrounding oxide layer. We have also observed that coercivity (H (C)) develops appreciably below T (B), and follows the H (C) ae [1 - (T/T (B))(0.5)] relationship, a feature expected for randomly oriented and non-interacting nanoparticles. The extrapolation of H (C) to 0 K indicates that coercivity decreases with increasing x, suggesting that dipolar interactions may be relevant in films with x > 3 wt% Ni.
Resumo:
We propose goethite nanorods as suitable anti-ferromagnetic substrates. The great advantage of using these inorganic nanostructures as building blocks comes from the fact that it permits the design and fabrication of colloidal and supracolloidal assemblies knowing first their magnetic characteristics. As a proof of concept, we have developed mix multifunctional systems, driving on the surface of these AFM substrates, cobalt ferrite nanoparticles (the study of bimagnetic systems opens new degrees of freedom to tailor the overall properties and offers the Meiklejohn-Bean paradigm, but inverted), a silica shell (protection purposes, but also as a tailored spacer that permits controlling magnetic interactions), and metallic gold clusters (seeds that can favor the acquisition of optical or catalytic properties).
Resumo:
The molecular architecture of azopolymers may be controlled via chemical synthesis and with selection of a suitable film-forming method, which is important for improving their properties for practical uses. Here we address the main challenge of combining the photoinduced birefringence features of azopolymers with the higher thermal and mechanical stabilities of poly(methyl methacrylate) (PMMA) using Atom Transfer Radical Polymerization (ATRP) to synthesize diblock- and triblock-copolymers of an azomonomer and the monomer methyl methacrylate. Langmuir-Blodgett (LB) films made with the copolymers mixed with cadmium stearate displayed essentially the same optically induced birefringence characteristics, in terms of maximum and residual birefringence and time for writing, as the mixed LB films with the homopolymer poly[4-(N-ethyl-N-(2-methacryloxyethyl))amino-2`-chloro-4`-nitroazobenzene] (HPDR13), also synthesized via ATRP. In fact, the controlled architecture of HPDR13 chains led to Langmuir films that could be more closely packed and reach higher collapse pressures than the corresponding films obtained with HPDR13-conv synthesized via conventional radicalar polymerization. This allowed LB films to be fabricated from neat HPDR13, which was not possible with HPDR13-conv. The enhanced organization in the LB films produced with controlled azopolymer chains, however, led to a smaller free volume available for isomerization of the azochromophores, thus yielding a lower photoinduced birefringence than in the HPDR13-conv films. The combination of ATRP synthesis and LB technology is then promising to obtain optical storage in films with improved thermal and mechanical processabilities, though a further degree of control must be sought to exploit film organization while maintaining the necessary free volume in the films. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Electroactive nanostructured membranes have been produced by the layer-by-layer (LbL) technique, and used to make electrochemical enzyme biosensors for glucose by modification with cobalt hexacyanoferrate redox mediator and immobilisation of glucose oxidase enzyme. Indium tin oxide (ITO) glass electrodes were modified with up to three bilayers of polyamidoamine (PAMAM) dendrimers containing gold nanoparticles and poly(vinylsulfonate) (PVS). The gold nanoparticles were covered with cobalt hexacyanoferrate that functioned as a redox mediator, allowing the modified electrode to be used to detect H(2)O(2), the product of the oxidase enzymatic reaction, at 0.0 V vs. SCE. Enzyme was then immobilised by cross-linking with glutaraldehyde. Several parameters for optimisation of the glucose biosensor were investigated, including the number of deposited bilayers, the enzyme immobilisation protocol and the concentrations of immobilised enzyme and of the protein that was crosslinked with PAMAM. The latter was used to provide glucose oxidase with a friendly environment, in order to preserve its bioactivity. The optimised biosensor, with three bilayers, has high sensitivity and operational stability, with a detection limit of 6.1 mu M and an apparent Michaelis-Menten constant of 0.20 mM. It showed good selectivity against interferents and is suitable for glucose measurements in natural samples. (C) 2008 Elsevier B.V. All rights reserved.