1000 resultados para CLIMATE
Resumo:
Essery, R L H, Pomeroy, J W, Parvianen, J & Storck, P, Sublimation of snow from confierous forests in a climate model. Journal of Climate 16, pp 1855-1864 (2003).
Resumo:
How rainfall infiltration rate and soil hydrological characteristics develop over time under forests of different ages in temperate regions is poorly understood. In this study, infiltration rate and soil hydrological characteristics were investigated under forests of different ages and under grassland. Soil hydraulic characteristics were measured at different scales under a 250 year old grazed grassland (GL), a six (6 yr) and 48 (48 yr) year old Scots pine (Pinus sylvestris) plantation, remnant 300 year old individual Scots pines (OT) and a 4000 year old Caledonian Forest (AF). In-situ field saturated hydraulic conductivity (Kfs) was measured and visible root:soil area was estimated from soil pits. Macroporosity, pore structure, and macropore connectivity were estimated from X-ray tomography of soil cores, and from water-release characteristics. At all scales the median values for Kfs, root fraction, macro-porosity and connectivity values tended to AF > OT > 48 yr > GL > 6 yr, indicating that infiltration rates and water storage increased with forest age. The remnant Caledonian Forest had a huge range of Kfs (12 to > 4922 mm h-1), with maximum Kfs values 7 to 15 times larger than 48-year-old Scots pine plantation, suggesting that undisturbed old forests, with high rainfall and minimal evapotranspiration in winter, may act as important areas for water storage and sinks for storm rainfall to infiltrate and transport to deeper soil layers via preferential flow. The importance of the development of soil hydrological characteristics under different aged forests is discussed.
Resumo:
Brian Huntley, Rhys E. Green, Yvonne C. Collingham, Jane K. Hill, Stephen G. Willis , Patrick J. Bartlein, Wolfgang Cramer, Ward J. M. Hagemeijer and Christopher J. Thomas (2004). The performance of models relating species geographical distributions to climate is independent of trophic level. Ecology Letters, 7(5), 417-426. Sponsorship: NERC (awards: GR9/3016, GR9/04270, GR3/12542, NER/F/S/2000/00166) / RSPB RAE2008
Resumo:
Christopher J Thomas (2003). Anopheles gambiae and climate in Brazil. The Lancet, Infectious Diseases, 3 (6), 326-326. RAE2008
Resumo:
Workshop on Energy Greenhouse Gases & Environment, Porto, 2008
Resumo:
Recencion: Book Description " COLEY, David - Energy and Climate Change: creating a sustainable future. New York: John Wiley & Sons Inc, 2008. ISBN 978-0-470-85313-9"
Resumo:
The case for energy policy modelling is strong in Ireland, where stringent EU climate targets are projected to be overshot by 2015. Policy targets aiming to deliver greenhouse gas and renewable energy targets have been made, but it is unclear what savings are to be achieved and from which sectors. Concurrently, the growth of personal mobility has caused an astonishing increase in CO2 emissions from private cars in Ireland, a 37% rise between 2000 and 2008, and while there have been improvements in the efficiency of car technology, there was no decrease in the energy intensity of the car fleet in the same period. This thesis increases the capacity for evidenced-based policymaking in Ireland by developing techno-economic transport energy models and using them to analyse historical trends and to project possible future scenarios. A central focus of this thesis is to understand the effect of the car fleet‘s evolving technical characteristics on energy demand. A car stock model is developed to analyse this question from three angles: Firstly, analysis of car registration and activity data between 2000 and 2008 examines the trends which brought about the surge in energy demand. Secondly, the car stock is modelled into the future and is used to populate a baseline “no new policy” scenario, looking at the impact of recent (2008-2011) policy and purchasing developments on projected energy demand and emissions. Thirdly, a range of technology efficiency, fuel switching and behavioural scenarios are developed up to 2025 in order to indicate the emissions abatement and renewable energy penetration potential from alternative policy packages. In particular, an ambitious car fleet electrification target for Ireland is examined. The car stock model‘s functionality is extended by linking it with other models: LEAP-Ireland, a bottom-up energy demand model for all energy sectors in the country; Irish TIMES, a linear optimisation energy system model; and COPERT, a pollution model. The methodology is also adapted to analyse trends in freight energy demand in a similar way. Finally, this thesis addresses the gap in the representation of travel behaviour in linear energy systems models. A novel methodology is developed and case studies for Ireland and California are presented using the TIMES model. Transport Energy
Resumo:
Due to growing concerns regarding the anthropogenic interference with the climate system, countries across the world are being challenged to develop effective strategies to mitigate climate change by reducing or preventing greenhouse gas (GHG) emissions. The European Union (EU) is committed to contribute to this challenge by setting a number of climate and energy targets for the years 2020, 2030 and 2050 and then agreeing effort sharing amongst Member States. This thesis focus on one Member State, Ireland, which faces specific challenges and is not on track to meet the targets agreed to date. Before this work commenced, there were no projections of energy demand or supply for Ireland beyond 2020. This thesis uses techno-economic energy modelling instruments to address this knowledge gap. It builds and compares robust, comprehensive policy scenarios, providing a means of assessing the implications of different future energy and emissions pathways for the Irish economy, Ireland’s energy mix and the environment. A central focus of this thesis is to explore the dynamics of the energy system moving towards a low carbon economy. This thesis develops an energy systems model (the Irish TIMES model) to assess the implications of a range of energy and climate policy targets and target years. The thesis also compares the results generated from the least cost scenarios with official projections and target pathways and provides useful metrics and indications to identify key drivers and to support both policy makers and stakeholder in identifying cost optimal strategies. The thesis also extends the functionality of energy system modelling by developing and applying new methodologies to provide additional insights with a focus on particular issues that emerge from the scenario analysis carried out. Firstly, the thesis develops a methodology for soft-linking an energy systems model (Irish TIMES) with a power systems model (PLEXOS) to improve the interpretation of the electricity sector results in the energy system model. The soft-linking enables higher temporal resolution and improved characterisation of power plants and power system operation Secondly, the thesis develops a methodology for the integration of agriculture and energy systems modelling to enable coherent economy wide climate mitigation scenario analysis. This provides a very useful starting point for considering the trade-offs between the energy system and agriculture in the context of a low carbon economy and for enabling analysis of land-use competition. Three specific time scale perspectives are examined in this thesis (2020, 2030, 2050), aligning with key policy target time horizons. The results indicate that Ireland’s short term mandatory emissions reduction target will not be achieved without a significant reassessment of renewable energy policy and that the current dominant policy focus on wind-generated electricity is misplaced. In the medium to long term, the results suggest that energy efficiency is the first cost effective measure to deliver emissions reduction; biomass and biofuels are likely to be the most significant fuel source for Ireland in the context of a low carbon future prompting the need for a detailed assessment of possible implications for sustainability and competition with the agri-food sectors; significant changes are required in infrastructure to deliver deep emissions reductions (to enable the electrification of heat and transport, to accommodate carbon capture and storage facilities (CCS) and for biofuels); competition between energy and agriculture for land-use will become a key issue. The purpose of this thesis is to increase the evidence-based underpinning energy and climate policy decisions in Ireland. The methodology is replicable in other Member States.
Resumo:
Little is known about the biology of the softshell clam in Europe, despite it being identified as a potential species to culture for food in the future. Monthly samples of the softshell clam, Mya arenaria, were collected intertidally from Co. Wexford, Ireland, over a period of sixteen months. The mean weight of sampled individuals was 7 4 ± 4 . 9 g and mean length was 8 . 2 ± 0 . 2 cm. Histological examination revealed a female-to-male ratio of 1 : 1.15. In 2010, M. arenaria at this site matured over the summer months, with both sexes either ripe or spawning by August. A single spawning event was recorded in 2010, completed by November. Two unusually cold winters, followed by a warmer-than-average spring, appear to have affected M. arenaria gametogenesis in this area, potentially affecting the time of spawning, fertilisation success, and recruitment of this species. No hermaphrodites were observed in the samples collected, nor were any pathogens observed. Timing of development and spawning is compared with the coasts of eastern North America and with other European coasts.
Resumo:
This thesis argues that examining the attitudes, perceptions, behaviors, and knowledge of a community towards their specific watershed can reveal their social vulnerability to climate change. Understanding and incorporating these elements of the human dimension in coastal zone management will lead to efficient and effective strategies that safeguard the natural resources for the benefit of the community. By having healthy natural resources, ecological and community resilience to climate change will increase, thus decreasing vulnerability. In the Pacific Ocean, climate and SLR are strongly modulated by the El Niño Southern Oscillation. SLR is three times the global average in the Western Pacific Ocean (Merrifield and Maltrud 2011; Merrifield 2011). Changes in annual rainfall in the Western North Pacific sub‐region from 1950-2010 show that islands in the east are getting much less than in the past, while the islands in the west are getting slightly more rainfall (Keener et al. 2013). For Guam, a small island owned by the United States and located in the Western Pacific Ocean, these factors mean that SLR is higher than any other place in the world and will most likely see increased precipitation. Knowing this, the social vulnerability may be examined. Thus, a case-study of the community residing in the Manell and Geus watersheds was conducted on the island of Guam. Measuring their perceptions, attitudes, knowledge, and behaviors should bring to light their vulnerability to climate change. In order to accomplish this, a household survey was administered from July through August 2010. Approximately 350 surveys were analysed using SPSS. To supplement this quantitative data, informal interviews were conducted with the elders of the community to glean traditional ecological knowledge about perceived climate change. A GIS analysis was conducted to understand the physical geography of the Manell and Geus watersheds. This information about the human dimension is valuable to CZM managers. It may be incorporated into strategic watershed plans, to better administer the natural resources within the coastal zone. The research conducted in this thesis is the basis of a recent watershed management plan for the Guam Coastal Management Program (see King 2014).
Resumo:
Spatially periodic vegetation patterns are well known in arid and semi-arid regions around the world. Mathematical models have been developed that attribute this phenomenon to a symmetry-breaking instability. Such models are based on the interplay between competitive and facilitative influences that the vegetation exerts on its own dynamics when it is constrained by arid conditions, but evidence for these predictions is still lacking. Moreover, not all models can account for the development of regularly spaced spots of bare ground in the absence of a soil prepattern. We applied Fourier analysis to high-resolution, remotely sensed data taken at either end of a 40-year interval in southern Niger. Statistical comparisons based on this textural characterization gave us broad-scale evidence that the decrease in rainfall over recent decades in the sub-Saharan Sahel has been accompanied by a detectable shift from homogeneous vegetation cover to spotted patterns marked by a spatial frequency of about 20 cycles km-1. Wood cutting and grazing by domestic animals have led to a much more marked transition in unprotected areas than in a protected reserve. Field measurements demonstrated that the dominant spatial frequency was endogenous rather than reflecting the spatial variation of any pre-existing heterogeneity in soil properties. All these results support the use of models that can account for periodic vegetation patterns without invoking substrate heterogeneity or anisotropy, and provide new elements for further developments, refinements and tests. This study underlines the potential of studying vegetation pattern properties for monitoring climatic and human impacts on the extensive fragile areas bordering hot deserts. Explicit consideration of vegetation self-patterning may also improve our understanding of vegetation and climate interactions in arid areas. © 2006 The Authors.
Resumo:
Phosphorus (P) is a crucial element for life and therefore for maintaining ecosystem productivity. Its local availability to the terrestrial biosphere results from the interaction between climate, tectonic uplift, atmospheric transport, and biotic cycling. Here we present a mathematical model that describes the terrestrial P-cycle in a simple but comprehensive way. The resulting dynamical system can be solved analytically for steady-state conditions, allowing us to test the sensitivity of the P-availability to the key parameters and processes. Given constant inputs, we find that humid ecosystems exhibit lower P availability due to higher runoff and losses, and that tectonic uplift is a fundamental constraint. In particular, we find that in humid ecosystems the biotic cycling seem essential to maintain long-term P-availability. The time-dependent P dynamics for the Franz Josef and Hawaii chronosequences show how tectonic uplift is an important constraint on ecosystem productivity, while hydroclimatic conditions control the P-losses and speed towards steady-state. The model also helps describe how, with limited uplift and atmospheric input, as in the case of the Amazon Basin, ecosystems must rely on mechanisms that enhance P-availability and retention. Our novel model has a limited number of parameters and can be easily integrated into global climate models to provide a representation of the response of the terrestrial biosphere to global change. © 2010 Author(s).
Resumo:
Nations around the world are considering strategies to mitigate the severe impacts of climate change predicted to occur in the twenty-first century. Many countries, however, lack the wealth, technology, and government institutions to effectively cope with climate change. This study investigates the varying degrees to which developing and developed nations will be exposed to changes in three key variables: temperature, precipitation, and runoff. We use Geographic Information Systems (GIS) analysis to compare current and future climate model predictions on a country level. We then compare our calculations of climate change exposure for each nation to several metrics of political and economic well-being. Our results indicate that the impacts of changes in precipitation and runoff are distributed relatively equally between developed and developing nations. In contrast, we confirm research suggesting that developing nations will be affected far more severely by changes in temperature than developed nations. Our results also suggest that this unequal impact will persist throughout the twenty-first century. Our analysis further indicates that the most significant temperature changes will occur in politically unstable countries, creating an additional motivation for developed countries to actively engage with developing nations on climate mitigation strategies. © 2011, Mary Ann Liebert, Inc.
Resumo:
Through an examination of global climate change models combined with hydrological data on deteriorating water quality in the Middle East and North Africa (MENA), we elucidate the ways in which the MENA countries are vulnerable to climate-induced impacts on water resources. Adaptive governance strategies, however, remain a low priority for political leaderships in the MENA region. To date, most MENA governments have concentrated the bulk of their resources on large-scale supply side projects such as desalination, dam construction, inter-basin water transfers, tapping fossil groundwater aquifers, and importing virtual water. Because managing water demand, improving the efficiency of water use, and promoting conservation will be key ingredients in responding to climate-induced impacts on the water sector, we analyze the political, economic, and institutional drivers that have shaped governance responses. While the scholarly literature emphasizes the importance of social capital to adaptive governance, we find that many political leaders and water experts in the MENA rarely engage societal actors in considering water risks. We conclude that the key capacities for adaptive governance to water scarcity in MENA are underdeveloped. © 2010 Springer Science+Business Media B.V.