977 resultados para CHROMOSOME-ABNORMALITIES
Resumo:
The mammalian collagen, type IX, alpha 2 gene (COL9A2) encodes the alpha-2 chain of type IX collagen and is located on horse chromosome 2p16-->p14 harbouring a quantitative trait locus for osteochondrosis. We isolated a bacterial artificial chromosome (BAC) clone containing the equine COL9A2 gene and determined the complete genomic sequence of this gene. Cloning and characterization of equine COL9A2 revealed that the equine gene consists of 32 exons spanning approximately 15 kb. The COL9A2 transcript encodes a single protein of 688 amino acids. Thirty two single nucleotide polymorphisms (SNPs) equally distributed in the gene were detected in a mutation scan of eight unrelated Hanoverian warmblood stallions, including one SNP that affects the amino acid sequence of COL9A2. Comparative analyses between horse, human, mouse and rat indicate that the chromosomal location of equine COL9A2 is in agreement with known chromosomal synteny relationships. The comparison of the gene structure and transcript revealed a high degree of conservation towards the other mammalian COL9A2 genes. We chose three informative SNPs for association and linkage disequilibrium tests in three to five paternal half-sib families of Hanoverian warmblood horses consisting of 44 to 75 genotyped animals. The test statistics did not reach the significance threshold of 5% and so we could not show an association of COL9A2 with equine osteochondrosis.
Resumo:
Claudins are major components of tight junctions and contribute to the epithelial-barrier function by restricting free diffusion of solutes through the paracellular pathway. We have mapped a new locus for recessive renal magnesium loss on chromosome 1p34.2 and have identified mutations in CLDN19, a member of the claudin multigene family, in patients affected by hypomagnesemia, renal failure, and severe ocular abnormalities. CLDN19 encodes the tight-junction protein claudin-19, and we demonstrate high expression of CLDN19 in renal tubules and the retina. The identified mutations interfere severely with either cell-membrane trafficking or the assembly of the claudin-19 protein. The identification of CLDN19 mutations in patients with chronic renal failure and severe visual impairment supports the fundamental role of claudin-19 for normal renal tubular function and undisturbed organization and development of the retina.
Resumo:
The age distribution and incidence of loss of heterozygosity (LOH) of 1p and 19q was analyzed in 85 oligodendroglial tumors WHO II and III. The peak of tumor manifestation was in the age group of 35 to 55 years. There was no association between age at diagnosis and LOH incidence. We conclude that the prognostic effect of age on survival is not mediated by LOH 1p/19q.
Resumo:
We characterized changes in the visual behavior of mice in which a loss of the retinal pigment epithelium (RPE) was experimentally induced with intravenous (i.v.) administration of sodium iodate (NaIO3). We compared and correlated these changes with alterations in neural retinal structure and function. RPE loss was induced in 4-6 week old male C57BL/6 mice with an i.v. injection of 1% NaIO3 at three concentrations: 35, 50, or 70 mg/kg. At 1, 3, 7, 14, 21, and 28 days (d) as well as 6 months post injection (PI) a behavioral test was performed in previously trained mice to evaluate visual function. Eye morphology was then assessed for changes in both the RPE and neural retina. NaIO3-induced RPE degeneration was both dose and PI time dependent. Our low dose showed no effects, while our high dose caused the most damage, as did longer PI times at our intermediate dose. Using the intermediate dose, no changes were detectable in either visual behavior or retinal morphology at 1 d PI. However, at 3 d PI visual behavior became abnormal and patchy RPE cell loss was observed. From 7 d PI onward, changes in retinal morphology and visual behavior became more severe. At 6 months PI, no recovery was seen in any of these measures in mice administered the intermediate dose. These results show that NaIO3 dosage and/or time PI can be varied to produce different, yet permanent deficits in retinal morphology and visual function. Thus, this approach should provide a unique system in which the onset and severity of RPE damage, and its consequences can be manipulated. As such, it should be useful in the assessment of rescue or mitigating effects of retinal or stem cell transplantation on visual function.
Resumo:
The genesis of Tourette syndrome is still unknown, but a core role for the pathways of cortico-striatal-thalamic-cortical circuitry (CSTC) is supposed. Volume-rendering magnetic resonance imaging data-sets were analysed in 14 boys with Tourette syndrome and 15 age-matched controls using optimised voxel-based morphometry. Locally increased grey-matter volumes (corrected P < 0.001) were found bilaterally in the ventral putamen. Regional decreases in grey matter were observed in the left hippocampal gyrus. This unbiased analysis confirmed an association between striatal abnormalities and Tourette syndrome, and the hippocampal volume alterations indicate an involvement of temporolimbic pathways of the CSTC in the syndrome.
Resumo:
Familial hypomagnesemia with hypercalciuria and nephrocalcinosis is an autosomal recessive renal tubular disorder characterized by renal magnesium wasting, hypercalciuria, advanced nephrocalcinosis and progressive renal failure. Mutations in the paracellin-1 (CLDN16) gene have been defined as the underlying genetic defect. The tubular disorders and progression in renal failure are usually resistant to magnesium substitution and hydrochlorothiazide therapy, but hypomagnesemia may improve with advanced renal insufficiency. We present a patient with a homozygous truncating CLDN16 gene mutation (W237X) who had early onset of renal insufficiency despite early diagnosis at 2 months. He also had additional abnormalities including horseshoe kidney, neonatal teeth, atypical face, cardiac abnormalities including coarctation of the aorta associated with atrial and ventricular septal defects, umbilical hernia and hypertrichosis. To the best of our knowledge, this is the youngest case diagnosed as familial hypomagnesemia with hypercalciuria and nephrocalcinosis and the first case having such additional congenital abnormalities independent of the disease itself.
Resumo:
PURPOSE: To characterize the phenotype and map the locus responsible for autosomal recessive inherited ovine microphthalmia (OMO) in sheep. METHODS: Microphthalmia-affected lambs and their available relatives were collected in a field, and experimental matings were performed to obtain affected and normal lambs for detailed necropsy and histologic examinations. The matings resulted in 18 sheep families with 48 cases of microphthalmia. A comparative candidate gene approach was used to map the disease locus within the sheep genome. Initially, 27 loci responsible for the microphthalmia-anophthalmia phenotypes in humans or mice were selected to test for comparative linkage. Fifty flanking markers that were predicted from comparative genomic analysis to be closely linked to these genes were tested for linkage to the disease locus. After observation of statistical evidence for linkage, a confirmatory fine mapping strategy was applied by further genotyping of 43 microsatellites. RESULTS: The clinical and pathologic examinations showed slightly variable expressivity of isolated bilateral microphthalmia. The anterior eye chamber was small or absent, and a white mass admixed with cystic spaces extended from the papilla to the anterior eye chamber, while no recognizable vitreous body or lens was found within the affected eyes. Significant linkage to a single candidate region was identified at sheep chromosome 23. Fine mapping and haplotype analysis assigned the candidate region to a critical interval of 12.4 cM. This ovine chromosome segment encompasses an ancestral chromosomal breakpoint corresponding to two orthologue segments of human chromosomes 18, short and long arms. For the examined animals, we excluded the complete coding region and adjacent intronic regions of ovine TGIF1 to harbor disease-causing mutations. CONCLUSIONS: This is the first genetic localization for hereditary ovine isolated microphthalmia. It seems unlikely that a mutation in the TGIF1 gene is responsible for this disorder. The studied sheep represent a valuable large animal model for similar human ocular phenotypes.
Resumo:
More than 375,000 BAC-end sequences (BES) of the CHORI-243 ovine BAC library have been deposited in public databases. blastn searches with these BES against HSA18 revealed 1806 unique and significant hits. We used blastn-anchored BES for an in silico prediction of gene content and chromosome assignment of comparatively mapped ovine BAC clones. Ovine BES were selected at approximately 1.3-Mb intervals of HSA18 and incorporated into a human-sheep comparative map. An ovine 5000-rad whole-genome radiation hybrid panel (USUoRH5000) was typed with 70 markers, all of which mapped to OAR23. The resulting OAR23 RH map included 43 markers derived from BES with high and unique BLAST hits to the sequence of the orthologous HSA18, nine EST-derived markers, 16 microsatellite markers taken from the ovine linkage map and two bovine microsatellite markers. Six new microsatellite markers derived from the 43 mapped BES and the two bovine microsatellite markers were linkage-mapped using the International Mapping Flock (IMF). Thirteen additional microsatellite markers were derived from other ovine BES with high and unique BLAST hits to the sequence of the orthologous HSA18 and also positioned on the ovine linkage map but not incorporated into the OAR23 RH map. This resulted in 24 markers in common and in the same order between the RH and linkage maps. Eight of the BES-derived markers were mapped using fluorescent in situ hybridization (FISH), to thereby align the RH and cytogenetic maps. Comparison of the ovine chromosome 23 RH map with the HSA18 map identified and localized three major breakpoints between HSA18 and OAR23. The positions of these breakpoints were equivalent to those previously shown for syntenic BTA24 and HSA18. This study presents evidence for the usefulness of ovine BES when constructing a high-resolution comprehensive map for a single sheep chromosome. The comparative analysis confirms and refines knowledge about chromosomal conservation and rearrangements between sheep, cattle and human. The constructed RH map demonstrates the resolution and utility of the newly constructed ovine RH panel.
Resumo:
Bovine dilated cardiomyopathy (BDCMP) is a severe and terminal disease of the heart muscle observed in Holstein-Friesian cattle over the last 30 years. There is strong evidence for an autosomal recessive mode of inheritance for BDCMP. The objective of this study was to genetically map BDCMP, with the ultimate goal of identifying the causative mutation. A whole-genome scan using 199 microsatellite markers and one SNP revealed an assignment of BDCMP to BTA18. Fine-mapping on BTA18 refined the candidate region to the MSBDCMP06-BMS2785 interval. The interval containing the BDCMP locus was confirmed by multipoint linkage analysis using the software loki. The interval is about 6.7 Mb on the bovine genome sequence (Btau 3.1). The corresponding region of HSA19 is very gene-rich and contains roughly 200 genes. Although telomeric of the marker interval, TNNI3 is a possible positional and a functional candidate for BDCMP given its involvement in a human form of dilated cardiomyopathy. Sequence analysis of TNNI3 in cattle revealed no mutation in the coding sequence, but there was a G-to-A transition in intron 6 (AJ842179:c.378+315G>A). The analysis of this SNP using the study's BDCMP pedigree did not conclusively exclude TNNI3 as a candidate gene for BDCMP. Considering the high density of genes on the homologous region of HSA19, further refinement of the interval on BTA18 containing the BDCMP locus is needed.
Resumo:
REASONS FOR STUDY: Equine recurrent airway obstruction (RAO) is probably dependent on a complex interaction of genetic and environmental factors and shares many characteristic features with human asthma. Interleukin 4 receptor a chain (IL4RA) is a candidate gene because of its role in the development of human asthma, confirmation of this association is therefore required. METHODS: The equine BAC clone containing the IL4RA gene was localised to ECA13q13 by the FISH method. Microsatellite markers in this region were investigated for possible association and linkage with RAO in 2 large Warmblood halfsib families. Based on a history of clinical signs (coughing, nasal discharge, abnormal breathing and poor performance), horses were classified in a horse owner assessed respiratory signs index (HOARSI 1-4: from healthy, mild, moderate to severe signs). Four microsatellite markers (AHT133, LEX041, VHL47, ASB037) were analysed in the offspring of Sire 1 (48 unaffected HOARSI 1 vs. 59 affected HOARSI 2-4) and Sire 2 (35 HOARSI 1 vs. 50 HOARSI 2-4), age 07 years. RESULTS: For both sires haplotypes could be established in the order AHT133-LEXO47-VHL47-ASB37. The distances in this order were estimated to be 2.9, 0.9 and 2.3 centiMorgans, respectively. Haplotype association with mild to severe clinical signs of chronic lower airway disease (HOARSI 2-4) was significant in the offspring of Sire 1 (P = 0.026) but not significant for the offspring of Sire 2 (P = 0.32). Linkage analysis showed the ECA13q13 region containing IL4RA to be linked to equine chronic lower airway disease in one family (P<0.01), but not in the second family. CONCLUSIONS: This supports a genetic background for equine RAO and indicates that IL4RA is a candidate gene with possible locus heterogeneity for this disease. POTENTIAL RELEVANCE: Identification of major genes for RAO may provide a basis for breeding and individual prevention for this important disease.
Resumo:
We report on a de novo submicroscopic deletion of 20q13.33 identified by subtelomeric fluorescence in situ hybridization (FISH) in a 4-year-old girl with learning difficulties, hyperlaxity and strabismus, but without obvious dysmorphic features. Further investigations by array-based comparative genomic hybridization (array-CGH) and FISH analysis allowed us to delineate the smallest reported subterminal deletion of chromosome 20q, spanning a 1.1-1.6 Mb with a breakpoint localized between BAC RP5-887L7 and RP11-261N11. The genes CHRNA4 and KCNQ2 implicated in autosomal dominant epilepsy are included in the deletion interval. Subterminal 20q deletions as found in the present patient have, to our knowledge, only been reported in three patients. We review the clinical and behavioral phenotype of such "pure" subterminal 20q deletions.
Resumo:
INTRODUCTION: Adult patients with acute myeloid leukemia (AML) frequently present retinal abnormalities. We tried to find a relationship between fundus lesions and treatment responsiveness, prognosis, and several hematologic parameters. PATIENTS AND METHODS: We examined 178 adult patients with newly diagnosed AML. All patients were assigned to two groups regarding retinal parameters (1 or 2) and age (A or B). Group 1 included cases with retinal dysfunction classified as retinal abnormalities with impaired visual acuity; group 2 included cases with no or only minor retinal changes. Subgroup A included patients younger than 60 years (n=97), subgroup B patients older than 60 years (n=81). RESULTS: In this study, higher age and a lower Hb value were associated with retinal findings (group 1). Among the younger patients (subgroup A), 78% of those with complete remission had no retinal findings (group 2) compared to 18% of the nonresponders. In the elderly population (subgroup B), this ratio was 58% versus 19%. In the younger patients (subgroup A), the mean overall survival was 50 months if they had no retinal abnormalities (group 2) and 7 months in the case of retinal changes (group 1). In the older population (subgroup B), the ratio was 15 months versus 3 months, respectively. CONCLUSION: Retinal abnormalities in AML are generally associated with higher age, although they correlate with a shorter survival in both age groups. This association is stronger in younger patients.
Resumo:
Drosophila mutants have played an important role in elucidating the physiologic function of genes. Large-scale projects have succeeded in producing mutations in a large proportion of Drosophila genes. Many mutant fly lines have also been produced through the efforts of individual laboratories over the past century. In an effort to make some of these mutants more useful to the research community, we systematically mapped a large number of mutations affecting genes in the proximal half of chromosome arm 2L to more precisely defined regions, defined by deficiency intervals, and, when possible, by individual complementation groups. To further analyze regions 36 and 39-40, we produced 11 new deficiencies with gamma irradiation, and we constructed 6 new deficiencies in region 30-33, using the DrosDel system. trans-heterozygous combinations of deficiencies revealed 5 additional functions, essential for viability or fertility.