853 resultados para CHARACTERISATION
Resumo:
The properties of microelectrical conduction in microwave plasma assisted chemical vapour deposition (MPCVD) diamond films were investigated using an atomic force microscopy probe, giving a morphological map of the electrical conduction with a spatial resolution better than 500 nm. Also, a cathodoluminescence map with a spatial resolution of about 1 mu m was obtained, giving the possibility of correlating the defects involved in the different carrier transport phenomena. Using micro-Raman analysis several bands could be identified. It is found that the defects responsible for the cathodoluminescence (CL) blue band are responsible for the major part of the electrical conduction in diamond films, while the defects localised in < 111 > surfaces, responsible for the green CL emission, could be involved in a less conductive process. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
Posidonia oceanica is a Mediterranean endemic seagrass species that forms meadows covering ca. 2.5–4.5 millions of hectares, representing ca.25 % of the infralittoral and shallow circalittoral (down to 50m) bottoms of the Mediterranean. This seagrass is considered a habitat-engineer species and provides an elevated number of ecosystem services. In addition the Marine Strategy Framework Directive (MSFD, 2008/56/EC) includes seagrass like elements to evaluate the “Good Environmental Status” of the European coasts. Information about their phenological characteristic and structure of the meadows is needed for indicator estimations in order to establish their conservation status. The studied meadows are located in the westernmost limit of the P. oceanica distribution (North-western Alboran Sea) in the vecinity of the Strait of Gibraltar, an Atlantic-Mediterranean water transition area. Four sites were selected from East to West: Paraje Natural de Acantilados de Maro-Cerro Gordo (hereafter Maro), Special Area of Conservation “Calahonda” (hereafter Calahonda), Site of Community Importance Estepona (hereafter Estepona) and Punta Chullera (hereafter Chullera) where P. oceanica present their westernmost meadows. Phenological data were recorded from mid November to mid December in P. oceanica patches located at 2 – 3 m depth. At each site three types of patches (patch area <1m2, small patches; 1-2 m2, medium patches and >2 m2, large patches) were sampled. At each patch and site, 3 quadrants of 45 x 45 cm were sampled for shoot and inflorescences density measurements. In each quadrant, 10 random shoots were sampled for shoot morphology (shoot height and number of leaves). Shoot and inflorescences densities were standardized to squared meters. All the studied P. oceanica meadows develop on rocks and they present a fragmented structure with a coverage ranging between ca. 45% in Calahonda and Estepona and ca. 31% in Maro. The meadows of Chullera are reduced to a few small - medium patches with areas ranging between 0.5-1.5 m2 (Fig. 1). The meadows of Chullera and Estepona presented similar values of shoot density (ca. 752 – 662 shoots m-2, respectively) and leaf height (ca. 25 cm). Similarly, the Calahonda and Maro meadows also showed similar values of shoot density (ca. 510 – 550 shoots m-2, respectively) but displaying lower values than those of sites located closer to the Strait of Gibraltar. Regarding patch sizes and leaf height, the longest leaves (ca. 25 cm) were found in medium and large patches, but the number of leaves per shoot were higher in the small and the medium size patches (ca. 6.3 leaves per shoot). Flowering was only detected at the Calahonda meadows with maximum values of ca. 330 inflorescences m-2 (115.2 ± 98.2 inflorescences m-2, n= 9; mean ± SD) (Fig.1). Inflorescence density was not significant different among patches of different sizes. In the Alboran Sea and unlike the studied meadows, extensive beds of P. oceanica occur at the National Park of Cabo de Gata (northeastern Alboran Sea), but from east to west (Strait of Gibraltar), meadows are gradually fragmenting and their depth range decrease from 30m to 2m depth between Cabo de Gata and Chullera, respectively. Probably, the Atlantic influence and the characteristic oceanographic conditions of the Alboran Sea (i.e., higher turbidity, higher water turbulence) represent a developmental limiting factor for P. oceanica at higher depths. Similarities between the meadows located closer to Strait of Gibraltar (Chullera and Estepona) were detected as well as between those more distant (Calahonda and Maro). The first ones showed higher values of shoot densities and leaf heights than the formers, which could be relating to the higher hydrodynamic exposure found at Chullera and Estepona meadows. Regarding flowering events, sexual reproduction in P. oceanica is not common in different locations of the Mediterranean Sea. The available information seems to indicate that flowering represent an irregular event and it is related to high seawater temperature. In fact, the flowering episodes that occurred in Calahonda in November 2015, match with the warmest year ever recorded. This is the third flowering event registered in these meadows located close to the westernmost distributional limit of P. oceanica (Málaga, Alboran Sea), which could indicates that these meadows presents a healthy status. Furthermore, the absence of significant differences in relation to inflorescence density between patches of different sizes may be indicating that the fragmentation does not necessarily influence on the flowering of this seagrass species.
Resumo:
This thesis investigates the phenotypic and genotypic diversity of non-dairy L. lactis strains and their application to dairy fermentations. A bank of non-dairy lactococci were isolated from grass, vegetables and the bovine rumen. Subsequent analysis of these L. lactis strains revealed seven strains to possess cremoris genotypes which did not correlate with their observed phenotypes. Multi-locus sequence typing (MLST) and average nucleotide identity (ANI) highlighted the genetic diversity of lactis and cremoris subspecies. The application of these non-dairy lactococci to cheese production was also assessed. In milk, non-dairy strains formed diverse volatile profiles and selected strains were used as adjuncts in a mini Gouda-type cheese system. Sensory analysis showed non-dairy strains to be strongly associated with the development of off-flavours and bitterness. However, microfluidisation appeared to reduce bitterness. A novel bacteriophage, ɸL47, was isolated using the grass isolate L. lactis ssp. cremoris DPC6860 as a host. The phage, a member of the Siphoviridae, possessed a long tail fiber, previously unseen in dairy lactococcal phages. Genome sequencing revealed ɸL47 to be the largest sequenced lactococcal phage to date and owing to the high % similarity with ɸ949, a second member of the 949 group. Finally, to identify and characterise specific genes which may be important in niche adaptation and for applications to dairy fermentations, comparative genome sequence analysis was performed on L. lactis from corn (DPC6853), the bovine rumen (DPC6853) and grass (DPC6860). This study highlights the contribution of niche specialisation to the intra-species diversity of L. lactis and the adaptation of this organism to different environments. In summary this thesis describes the genetic diversity of L. lactis strains from outside the dairy environment and their potential application in dairy fermentations.
Resumo:
Introduction Seizures are harmful to the neonatal brain; this compels many clinicians and researchers to persevere further in optimizing every aspects of managing neonatal seizures. Aims To delineate the seizure profile between non-cooled versus cooled neonates with hypoxic-ischaemic encephalopathy (HIE), in neonates with stroke, the response of seizure burden to phenobarbitone and to quantify the degree of electroclinical dissociation (ECD) of seizures. Methods The multichannel video-EEG was used in this research study as the gold standard to detect seizures, allowing accurate quantification of seizure burden to be ascertained in term neonates. The entire EEG recording for each neonate was independently reviewed by at least 1 experienced neurophysiologist. Data were expressed in medians and interquartile ranges. Linear mixed models results were presented as mean (95% confidence interval); p values <0.05 were deemed as significant. Results Seizure burden in cooled neonates was lower than in non-cooled neonates [60(39-224) vs 203(141-406) minutes; p=0.027]. Seizure burden was reduced in cooled neonates with moderate HIE [49(26-89) vs 162(97-262) minutes; p=0.020] when compared with severe HIE. In neonates with stroke, the background pattern showed suppression over the infarcted side and seizures demonstrated a characteristic pattern. Compared with 10 mg/kg, phenobarbitone doses at 20 mg/kg reduced seizure burden (p=0.004). Seizure burden was reduced within 1 hour of phenobarbitone administration [mean (95% confidence interval): -14(-20 to -8) minutes/hour; p<0.001], but seizures returned to pre-treatment levels within 4 hours (p=0.064). The ECD index in cooled, non-cooled neonates with HIE, stroke and in neonates with other diagnoses were 88%, 94%, 64% and 75% respectively. Conclusions Further research exploring the treatment effects on seizure burden in the neonatal brain is required. A change to our current treatment strategy is warranted as we continue to strive for more effective seizure control, anchored with use of the multichannel EEG as the surveillance tool.
Resumo:
Metal oxide thin films are important for modern electronic devices ranging from thin film transistors to photovoltaics and functional optical coatings. Solution processed techniques allow for thin films to be rapidly deposited over a range of surfaces without the extensive processing of comparative vapour or physical deposition methods. The production of thin films of vanadium oxide prepared through dip-coating was developed enabling a greater understanding of the thin film formation. Mechanisms of depositing improved large area uniform coverage on a number of technologically relevant substrates were examined. The fundamental mechanism for polymer-assisted deposition in improving thin film surface smoothness and long range order has been delivered. Different methods were employed for adapting the alkoxide based dip-coating technique to produce a variety of amorphous and crystalline vanadium oxide based thin films. Using a wide range of material, spectroscopic and optical measurement techniques the morphology, structure and optoelectronic properties of the thin films were studied. The formation of pinholes on the surface of the thin films, due to dewetting and spinodal effects, was inhibited using the polymer assisted deposition technique. Uniform thin films with sub 50 nm thicknesses were deposited on a variety of substrates controlled through alterations to the solvent-alkoxide dilution ratios and employing polymer assisted deposition techniques. The effects of polymer assisted deposition altered the crystallized VO thin films from a granular surface structure to a polycrystalline structure composed of high density small in-plane grains. The formation of transparent VO based thin film through Si and Na substrate mediated diffusion highlighted new methods for material formation and doping.
Resumo:
We analysed the use of microneedle-based electrodes to enhance electroporation of mouse testis with DNA vectors for production of transgenic mice. Different microneedle formats were developed and tested, and we ultimately used electrodes based on arrays of 500 μm tall microneedles. In a series of experiments involving injection of a DNA vector expressing Green Fluorescent Protein (GFP) and electroporation using microneedle electrodes and a commercially available voltage supply, we compared the performance of flat and microneedle electrodes by measuring GFP expression at various timepoints after electroporation. Our main finding, supported by both experimental and simulated data, is that needles significantly enhanced electroporation of testis.
Resumo:
Due to design and process-related factors, there are local variations in the microstructure and mechanical behaviour of cast components. This work establishes a Digital Image Correlation (DIC) based method for characterisation and investigation of the effects of such local variations on the behaviour of a high pressure, die cast (HPDC) aluminium alloy. Plastic behaviour is studied using gradient solidified samples and characterisation models for the parameters of the Hollomon equation are developed, based on microstructural refinement. Samples with controlled microstructural variations are produced and the observed DIC strain field is compared with Finite Element Method (FEM) simulation results. The results show that the DIC based method can be applied to characterise local mechanical behaviour with high accuracy. The microstructural variations are observed to cause a redistribution of strain during tensile loading. This redistribution of strain can be predicted in the FEM simulation by incorporating local mechanical behaviour using the developed characterization model. A homogeneous FEM simulation is unable to predict the observed behaviour. The results motivate the application of a previously proposed simulation strategy, which is able to predict and incorporate local variations in mechanical behaviour into FEM simulations already in the design process for cast components.
Resumo:
Increasing food production to feed its rapidly growing population is a major policy goal of Pakistan. The production of traditional staples such as rice (Oryza sativa L.) and bread wheat (Triticum aestivum L.) has been intensified in many regions, but not in remote, drought-ridden areas. In these arid, marginal environments dates and their by-products are an option to complement staples given their high nutritive value and storability. To fill knowledge gaps about the role of date palm in the household (HH) income of rural communities and the structure of date value chains, this project studied date palm production across six districts in four provinces of Pakistan. During 2012–2013 a total of 170 HHs were interviewed with a structured questionnaire using a snowball sampling approach. The results showed that most of the HH were headed by males (99 %) who were married (74 %) and often illiterate (40 %). Agriculture was the main occupation of date palm growers (56 %), while a few coupled agricultural activities with business (17 %) or extra-farm employment opportunities (government 9 %; private sector 8 %). Date sales contributed >50 % to the total income of 39 % of HH and 90–100 % to 24 % of HH. Overall farmers grew a total of 39 date palm cultivars and cultivated an average of 409 ± 559 mature date palms. The majority of the respondents sold dates to commission agents (35 %), contractors (22 %) and wholesalers (21 %), while 28 % of HH cultivated date palms only for self-consumption. Date palm growers had only limited knowledge about high quality date cultivars, optimized farm management and about effective post-harvest conservation. Changes in extension and marketing efforts are needed to allow farmers to better exploit value chains in date thereby reaping higher benefits from improved market access to secure their often marginal income.
Resumo:
The present study evaluated the effect of salt reduction on traditional dry-cured sausages' safety, quality and product acceptance, comprising physicochemical and microbiological parameters, biogenic amines, fatty acids, texture profile and sensory analysis. According to our results, salt content had a major effect on microbiological counts, although not compromising the products' safety. Marked differences were identified regarding biogenic amines, in particular for histamine, tyramine and cadaverine, which were detected in larger amounts in products with 3%. Moreover, significant differences in the fatty acids profile have also been found, but only in less abundant components such as linoleic, lauric and heneicosanoic acids. Texture profile analysis of low-salt products, revealed a decrease in hardness and chewiness, along with an increase in adhesiveness values. Sensory evaluations revealed that despite the less intense aroma, products with 3% salt, had a more balanced salt perception. Our results suggest that salt content may be reduced to 50% in dry-cured products, with the obvious health-related advantages.
Resumo:
2016
Resumo:
This thesis presents AMR phenotypic evaluation and whole genome sequencing analysis of 288 Escherichia coli strains isolated from different sources (livestock, companion animal, wildlife, food and human) in Italy. Our data reflects general resistance trends in Europe, reporting tetracycline, ampicillin, sulfisoxazole and aminoglycosides resistance as the most common phenotypic AMR profile among livestock, pets, wildlife and humans. Identification of human and animal (livestock and companion animal) AMR profiles in niches with a rare (fishery, mollusc) or absent (vegetable, wild animal, wild boar) direct exposure to antimicrobials, suggests widespread environmental pollution with ARGs conferring resistance to these antimicrobials. Phenotypic resistance to highest priority critically important antimicrobials was mainly observed in food-producing animals and related food such as rabbit, poultry, beef and swine. Discrepancies between AMR phenotypic pattern and genetic profile were observed. In particular, phenotypic aminoglycoside, cephalosporin, meropenem, colistin resistance and ESBL profile did not have a genetic explanation in different cases. This data could suggest the diffusion of new genetic variants of ARGs, associated to these antimicrobial classes. Generally, our collection shows a virulence profile typical of extraintestinal pathogenic Escherichia coli (ExPEC) pathotype. Different pandemic and emerging ExPEC lineages were identified, in particular in poultry meat (ST10; ST23; ST69, ST117; ST131). Rabbit was suggested as a source of ST20-ST40 potential hybrid pathogens. Wildlife carried a high average number (10) of VAGs (mostly associated to ExPEC pathotype) and different predominant ExPEC lineages (ST23, ST117, ST648), suggesting its possible involvement in maintenance and diffusion of virulence determinants. In conclusion, our study provides important knowledge related to the phenotypic/genetic AMR and virulence profiles circulating in E. coli in Italy. The role of different niches in AMR dynamics has been discussed. In particular, food-producing animals are worthy of continued investigation as a source of potential zoonotic pathogens, meanwhile wildlife might contribute to VAGs spread.
Resumo:
The present thesis focuses on the on-fault slip distribution of large earthquakes in the framework of tsunami hazard assessment and tsunami warning improvement. It is widely known that ruptures on seismic faults are strongly heterogeneous. In the case of tsunamigenic earthquakes, the slip heterogeneity strongly influences the spatial distribution of the largest tsunami effects along the nearest coastlines. Unfortunately, after an earthquake occurs, the so-called finite-fault models (FFM) describing the coseismic on-fault slip pattern becomes available over time scales that are incompatible with early tsunami warning purposes, especially in the near field. Our work aims to characterize the slip heterogeneity in a fast, but still suitable way. Using finite-fault models to build a starting dataset of seismic events, the characteristics of the fault planes are studied with respect to the magnitude. The patterns of the slip distribution on the rupture plane, analysed with a cluster identification algorithm, reveal a preferential single-asperity representation that can be approximated by a two-dimensional Gaussian slip distribution (2D GD). The goodness of the 2D GD model is compared to other distributions used in literature and its ability to represent the slip heterogeneity in the form of the main asperity is proven. The magnitude dependence of the 2D GD parameters is investigated and turns out to be of primary importance from an early warning perspective. The Gaussian model is applied to the 16 September 2015 Illapel, Chile, earthquake and used to compute early tsunami predictions that are satisfactorily compared with the available observations. The fast computation of the 2D GD and its suitability in representing the slip complexity of the seismic source make it a useful tool for the tsunami early warning assessments, especially for what concerns the near field.
Resumo:
Primary glioblastoma (GB), the most common and aggressive adult brain tumour, is refractory to conventional therapies and characterised by poor prognosis. GB displays striking cellular heterogeneity, with a sub-population, called Glioblastoma Stem Cells (GSCs), intrinsically resistant to therapy, hence the high rate of recurrence. Alterations of the tumour suppressor gene PTEN are prevalent in primary GBM, resulting in the inhibition of the polarity protein Lgl1 due to aPKC hyperactivation. Dysregulation of this molecular axis is one of the mechanisms involved in GSC maintenance. After demonstrating that the PTEN/aPKC/Lgl axis is conserved in Drosophila, I deregulated it in different cells populations of the nervous system in order to individuate the cells at the root of neurogenic brain cancers. This analysis identified the type II neuroblasts (NBs) as the most sensitive to alterations of this molecular axis. Type II NBs are a sub-population of Drosophila stem cells displaying a lineage similar to that of the mammalian neural stem cells. Following aPKC activation in these stem cells, I obtained an adult brain cancer model in Drosophila that summarises many phenotypic traits of human brain tumours. Fly tumours are indeed characterised by accumulation of highly proliferative immature cells and keep growing in the adult leading the affected animals to premature death. With the aim to understand the role of cell polarity disruption in this tumorigenic process I carried out a molecular characterisation and transcriptome analysis of brain cancers from our fly model. In summary, the model I built and partially characterised in this thesis work may help deepen our knowledge on human brain cancers by investigating many different aspects of this complicate disease.
Resumo:
Cerium oxide in catalysis can be used both as support and as a catalyst itself. Ceria catalyses many oxidations reactions, its excellent catalytic properties are due to its store oxygen storage capacity (OSC) and the reticular defects present on its surface. Different morphologies expose different reticular planes, and different reticular planes can expose different amounts of defects. The preparation method of cerium oxide can influence the surface area, morphology, and the number of defects in the sample. This work is focused on different preparation methods for gold nanoparticles supported on 1D nanostructures of cerium oxide prepared via electrospinning, their XRD, DRUV-Vis and Raman characterizations, and their catalytic performance on the oxidation reaction of HMF to FDCA.
Resumo:
The time-dependent CP asymmetries of the $B^0\to\pi^+\pi^-$ and $B^0_s\toK^+K^-$ decays and the time-integrated CP asymmetries of the $B^0\toK^+\pi^-$ and $B^0_s\to\pi^+K^-$ decays are measured, using the $p-p$ collision data collected with the LHCb detector and corresponding to the full Run2. The results are compatible with previous determinations of these quantities from LHCb, except for the CP-violation parameters of the $B^0_s\to K^+K^-$ decays, that show a discrepancy exceeding 3 standard deviations between different data-taking periods. The investigations being conducted to understand the discrepancy are documented. The measurement of the CKM matrix element $|V_{cb}|$ using $B^0_{s}\to D^{(*)-}_s\mu^+ \nu_\mu$ is also reported, using the $p-p$ collision data collected with the LHCb detector and corresponding to the full Run1. The measurement leads to $|V_{cb}| = (41.4\pm0.6\pm0.9\pm1.2)\times 10^{-3}$, where the first uncertainty is statistical, the second is systematic, and the third is due to external inputs. This measurement is compatible with the world averages and constitutes the first measurement of $|V_{cb}|$ at a hadron collider and the absolute first one with decays of the $B^0_s$ meson. The analysis also provides the very first measurements of the branching ratio and form factors parameters of the signal decay modes. The study of the characteristics ruling the response of an electromagnetic calorimeter (ECAL) to profitably operate in the high luminosity regime foreseen for the Upgrade2 of LHCb is reported in the final part of this Thesis. A fast and flexible simulation framework is developed to this purpose. Physics performance of different configurations of the ECAL are evaluated using samples of fully simulated $B^0\to \pi^+\pi^-\pi^0$ and $B^0\to K^{*0}e^+e^-$ decays. The results are used to guide the development of the future ECAL and are reported in the Framework Technical Design Report of the LHCb Upgrade2 detector.