1000 resultados para CENTRIFUGE MODELS
Resumo:
Energy-based direct methods for transient stability analysis are potentially useful both as offline tools for planning purposes as well as for online security assessment. In this paper, a novel structure-preserving energy function (SPEF) is developed using the philosophy of structure-preserving model for the system and detailed generator model including flux decay, transient saliency, automatic voltage regulator (AVR), exciter and damper winding. A simpler and yet general expression for the SPEF is also derived which can simplify the computation of the energy function. The system equations and the energy function are derived using the centre-of-inertia (COI) formulation and the system loads are modelled as arbitrary functions of the respective bus voltages. Application of the proposed SPEF to transient stability evaluation of power systems is illustrated with numerical examples.
Resumo:
In recent years, thanks to developments in information technology, large-dimensional datasets have been increasingly available. Researchers now have access to thousands of economic series and the information contained in them can be used to create accurate forecasts and to test economic theories. To exploit this large amount of information, researchers and policymakers need an appropriate econometric model.Usual time series models, vector autoregression for example, cannot incorporate more than a few variables. There are two ways to solve this problem: use variable selection procedures or gather the information contained in the series to create an index model. This thesis focuses on one of the most widespread index model, the dynamic factor model (the theory behind this model, based on previous literature, is the core of the first part of this study), and its use in forecasting Finnish macroeconomic indicators (which is the focus of the second part of the thesis). In particular, I forecast economic activity indicators (e.g. GDP) and price indicators (e.g. consumer price index), from 3 large Finnish datasets. The first dataset contains a large series of aggregated data obtained from the Statistics Finland database. The second dataset is composed by economic indicators from Bank of Finland. The last dataset is formed by disaggregated data from Statistic Finland, which I call micro dataset. The forecasts are computed following a two steps procedure: in the first step I estimate a set of common factors from the original dataset. The second step consists in formulating forecasting equations including the factors extracted previously. The predictions are evaluated using relative mean squared forecast error, where the benchmark model is a univariate autoregressive model. The results are dataset-dependent. The forecasts based on factor models are very accurate for the first dataset (the Statistics Finland one), while they are considerably worse for the Bank of Finland dataset. The forecasts derived from the micro dataset are still good, but less accurate than the ones obtained in the first case. This work leads to multiple research developments. The results here obtained can be replicated for longer datasets. The non-aggregated data can be represented in an even more disaggregated form (firm level). Finally, the use of the micro data, one of the major contributions of this thesis, can be useful in the imputation of missing values and the creation of flash estimates of macroeconomic indicator (nowcasting).
Resumo:
The circular dichroism spectra of four 0-turn model peptides, Z-Aib-Pro-Aib-Pro- OMe (l), Piv-Pro-Aib-NHMe (2), Piv-Pro-D-Ala-NHMe (3) and Piv-Pro-Val-NHMe (4) have been examined under a wide range of solvent conditions, using methanol, hexafluoroisopropanol and cyclohexane. Type I and Type I1 0-turns have been observed for peptides 1 and 2 respectively, in the solid state, while the Pro-D-Ala sequence adopts a Type I1 Sturn in a related peptide crystal structure. A class C spectrum is observed for 1 in various solvents, suggesting a variant of a Type I(II1) structure. The Type I1 f3-turn is characterized by a CD spectrum having two positive CD bands at - 230 nm and - 202 nm, a feature observed in Piv-Pro- D-Ala-NHMe in cyclohexane and methanol and for Piv-Pro-Aib-NHMe in methanol. Peptide 2 exhibits solvent dependent CD spectra, which may be rationalized by considering Type 11, I11 and V reverse turn structures. Piv-Pro- Val-NHMe adopts nonaturn structures in polar solvents, but exhibits a class B spectrum in cyclohexane suggesting a population of Type I &turns.
Resumo:
This thesis report attempts to improve the models for predicting forest stand structure for practical use, e.g. forest management planning (FMP) purposes in Finland. Comparisons were made between Weibull and Johnson s SB distribution and alternative regression estimation methods. Data used for preliminary studies was local but the final models were based on representative data. Models were validated mainly in terms of bias and RMSE in the main stand characteristics (e.g. volume) using independent data. The bivariate SBB distribution model was used to mimic realistic variations in tree dimensions by including within-diameter-class height variation. Using the traditional method, diameter distribution with the expected height resulted in reduced height variation, whereas the alternative bivariate method utilized the error-term of the height model. The lack of models for FMP was covered to some extent by the models for peatland and juvenile stands. The validation of these models showed that the more sophisticated regression estimation methods provided slightly improved accuracy. A flexible prediction and application for stand structure consisted of seemingly unrelated regression models for eight stand characteristics, the parameters of three optional distributions and Näslund s height curve. The cross-model covariance structure was used for linear prediction application, in which the expected values of the models were calibrated with the known stand characteristics. This provided a framework to validate the optional distributions and the optional set of stand characteristics. Height distribution is recommended for the earliest state of stands because of its continuous feature. From the mean height of about 4 m, Weibull dbh-frequency distribution is recommended in young stands if the input variables consist of arithmetic stand characteristics. In advanced stands, basal area-dbh distribution models are recommended. Näslund s height curve proved useful. Some efficient transformations of stand characteristics are introduced, e.g. the shape index, which combined the basal area, the stem number and the median diameter. Shape index enabled SB model for peatland stands to detect large variation in stand densities. This model also demonstrated reasonable behaviour for stands in mineral soils.
Resumo:
The long-range deuterium isotope effects on13C nuclear shielding are physically not yet completely understood. Two existing models for explaining these effects, vibrational and substituent, are compared here. The vibrational model is based on the Born-Oppenheimer approximation, but it can explain only one-bond deuterium effects. To the contrary, the substituent model may explain many long-range isotope effects, but it is controversial due to the assumption of some distinct electronic properties of isotopes. We explain how long-range deuterium isotope effects may be rationalized by the subtle electronic changes induced by isotope substitution, which does not violate the Born-Oppenheimer approximation.
Resumo:
Myrkyllisten aineiden jakaumat ja vaikutusmallit jätealueiden ympäristöriskien analyysissä.
Resumo:
XVIII IUFRO World Congress, Ljubljana 1986.
Resumo:
Parkinson´s disease (PD) is a debilitating age-related neurological disorder that affects various motor skills and can lead to a loss of cognitive functions. The motor symptoms are the result of the progressive degeneration of dopaminergic neurons within the substantia nigra. The factors that influence the pathogenesis and the progression of the neurodegeneration remain mostly unclear. This study investigated the role of various programmed cell death (PCD) pathways, oxidative stress, and glial cells both in dopaminergic neurodegeneration and in the protective action of various drugs. To this end, we exposed dopaminergic neuroblastoma cells (SH-SY5Y cells) to 6-OHDA, which produces oxidative stress and activates various PCD modalities that result in neuronal degeneration. Additionally, to explore the role of glia, we prepared rat midbrain primary mixed-cell cultures containing both neurons and glial cell types such as microglia and astroglia and then exposed the cultures to either MPP plus or lipopolysaccharide. Our results revealed that 6-OHDA activated several PCD pathways including apoptosis, autophagic stress, lysosomal membrane permeabilization, and perhaps paraptosis in SH-SY5Y cells. Furthermore, we found that minocycline protected SH-SY5Y cells from 6-OHDA by inhibiting both apoptotic and non-apoptotic PCD modalities. We also observed an inconsistent neuroprotective effect of various dietary anti-oxidant compounds against 6-OHDA toxicity in vitro in SH-SY5Y cells. Specifically, quercetin and curcumin exerted neuroprotection only within a narrow concentration range and a limited time frame, whereas resveratrol and epigallocatechin 3-gallate provided no protection whatsoever. Lastly, we found that molecules such as amantadine may delay or even halt the neurodegeneration in primary cell cultures by inhibiting the release of neurotoxic factors from overactivated microglia and by enhancing the pro-survival actions of astroglia. Together these data suggest that the strategy of dampening oxidative species with anti-oxidants is less effective than preventing the production of toxic factors such as oxidative and pro-inflammatory molecules by pathologically activated microglia. This would subsequently prevent the activation of various PCD modalities that cause neuronal degeneration.
Resumo:
The model for spin-state transitions described by Bari and Sivardiere (1972) is static and can be solved exactly even when the dynamics of the lattice are included; the dynamic model does not, however, show any phase transition. A coupling between the octahedra, on the other hand, leads to a phase transition in the dynamical two-sublattice displacement model. A coupling of the spin states to the cube of the sublattice displacement leads to a first-order phase transition. The most reasonable model appears to be a two-phonon model in which an ion-cage mode mixes the spin states, while a breathing mode couples to the spin states without mixing. This model explains the non-zero population of high-spin states at low temperatures, temperature-dependent variations in the inverse susceptibility and the spin-state population ratio, as well as the structural phase transitions accompanying spin-state transitions found in some systems.
Resumo:
The most prominent objective of the thesis is the development of the generalized descriptive set theory, as we call it. There, we study the space of all functions from a fixed uncountable cardinal to itself, or to a finite set of size two. These correspond to generalized notions of the universal Baire space (functions from natural numbers to themselves with the product topology) and the Cantor space (functions from natural numbers to the {0,1}-set) respectively. We generalize the notion of Borel sets in three different ways and study the corresponding Borel structures with the aims of generalizing classical theorems of descriptive set theory or providing counter examples. In particular we are interested in equivalence relations on these spaces and their Borel reducibility to each other. The last chapter shows, using game-theoretic techniques, that the order of Borel equivalence relations under Borel reduciblity has very high complexity. The techniques in the above described set theoretical side of the thesis include forcing, general topological notions such as meager sets and combinatorial games of infinite length. By coding uncountable models to functions, we are able to apply the understanding of the generalized descriptive set theory to the model theory of uncountable models. The links between the theorems of model theory (including Shelah's classification theory) and the theorems in pure set theory are provided using game theoretic techniques from Ehrenfeucht-Fraïssé games in model theory to cub-games in set theory. The bottom line of the research declairs that the descriptive (set theoretic) complexity of an isomorphism relation of a first-order definable model class goes in synch with the stability theoretical complexity of the corresponding first-order theory. The first chapter of the thesis has slightly different focus and is purely concerned with a certain modification of the well known Ehrenfeucht-Fraïssé games. There we (me and my supervisor Tapani Hyttinen) answer some natural questions about that game mainly concerning determinacy and its relation to the standard EF-game
Resumo:
Determining the sequence of amino acid residues in a heteropolymer chain of a protein with a given conformation is a discrete combinatorial problem that is not generally amenable for gradient-based continuous optimization algorithms. In this paper we present a new approach to this problem using continuous models. In this modeling, continuous "state functions" are proposed to designate the type of each residue in the chain. Such a continuous model helps define a continuous sequence space in which a chosen criterion is optimized to find the most appropriate sequence. Searching a continuous sequence space using a deterministic optimization algorithm makes it possible to find the optimal sequences with much less computation than many other approaches. The computational efficiency of this method is further improved by combining it with a graph spectral method, which explicitly takes into account the topology of the desired conformation and also helps make the combined method more robust. The continuous modeling used here appears to have additional advantages in mimicking the folding pathways and in creating the energy landscapes that help find sequences with high stability and kinetic accessibility. To illustrate the new approach, a widely used simplifying assumption is made by considering only two types of residues: hydrophobic (H) and polar (P). Self-avoiding compact lattice models are used to validate the method with known results in the literature and data that can be practically obtained by exhaustive enumeration on a desktop computer. We also present examples of sequence design for the HP models of some real proteins, which are solved in less than five minutes on a single-processor desktop computer Some open issues and future extensions are noted.
Resumo:
In this paper we study representation of KL-divergence minimization, in the cases where integer sufficient statistics exists, using tools from polynomial algebra. We show that the estimation of parametric statistical models in this case can be transformed to solving a system of polynomial equations. In particular, we also study the case of Kullback-Csiszar iteration scheme. We present implicit descriptions of these models and show that implicitization preserves specialization of prior distribution. This result leads us to a Grobner bases method to compute an implicit representation of minimum KL-divergence models.