964 resultados para CD8 T cells
Resumo:
A strategy to improve the immunogenicity of candidate vaccines is to trigger the innate immune system. Triggering of CD40 at the surface of dendritic cells (DC) is essential in the induction of an efficient immune response. Although CD40 agonist antibodies have been shown to be potent inducers of immune responses in experimental models, serious safety concerns have been raised for their use in humans. In addition, the production of soluble functional CD40 ligand has been challenging and the soluble form existing so far is not developed anymore. Here, we have evaluated the potency of a new soluble form of hexameric CD40 ligand (sCD40L) to serve as an adjuvant for anti-viral T cell responses. sCD40L was able to activate human DC and to enhance virus-specific memory T cell responses. These results demonstrate that this soluble form of CD40 ligand may serve as an adjuvant for T cell response and thus provide the rationale for its potential use in T cell based vaccine strategies.
Resumo:
In Chagas disease, understanding how the immune response controls parasite growth but also leads to heart damage may provide insight into the design of new therapeutic strategies. Tumor necrosis factor-alpha (TNF-α) is important for resistance to acute Trypanosoma cruzi infection; however, in patients suffering from chronic T. cruzi infection, plasma TNF-α levels correlate with cardiomyopathy. Recent data suggest that CD8-enriched chagasic myocarditis formation involves CCR1/CCR5-mediated cell migration. Herein, the contribution of TNF-α, especially signaling through the receptor TNFR1/p55, to the pathophysiology of T. cruzi infection was evaluated with a focus on the development of myocarditis and heart dysfunction. Colombian strain-infected C57BL/6 mice had increased frequencies of TNFR1/p55+ and TNF-α+ splenocytes. Although TNFR1-/- mice exhibited reduced myocarditis in the absence of parasite burden, they succumbed to acute infection. Similar to C57BL/6 mice, Benznidazole-treated TNFR1-/- mice survived acute infection. In TNFR1-/- mice, reduced CD8-enriched myocarditis was associated with defective activation of CD44+CD62Llow/- and CCR5+ CD8+ lymphocytes. Also, anti-TNF-α treatment reduced the frequency of CD8+CCR5+ circulating cells and myocarditis, though parasite load was unaltered in infected C3H/HeJ mice. TNFR1-/- and anti-TNF-α-treated infected mice showed regular expression of connexin-43 and reduced fibronectin deposition, respectively. Furthermore, anti-TNF-α treatment resulted in lower levels of CK-MB, a cardiomyocyte lesion marker. Our results suggest that TNF/TNFR1 signaling promotes CD8-enriched myocarditis formation and heart tissue damage, implicating the TNF/TNFR1 signaling pathway as a potential therapeutic target for control of T. cruzi-elicited cardiomyopathy.
Resumo:
Rhesus macaques infected with the WE strain of lymphocytic choriomeningitis virus (LCMV-WE) serve as a model for human infection with Lassa fever virus. To identify the earliest events of acute infection, rhesus macaques were monitored immediately after lethal infection for changes in peripheral blood mononuclear cells (PBMCs). Changes in CD3, CD4, CD8 and CD20 subsets did not vary outside the normal fluctuations of these blood cell populations; however, natural killer (NK) and γδ T cells increased slightly on day 1 and then decreased significantly after two days. The NK subsets responsible for the decrease were primarily CD3-CD8+ or CD3-CD16+ and not the NKT (primarily CD3+CD56+) subset. Macaques infected with a non-virulent arenavirus, LCMV-Armstrong, showed a similar drop in circulating NK and γδ T cells, indicating that this is not a pathogenic event. V³9 T cells, representing the majority of circulating γδ T cells in rhesus macaques, displayed significant apoptosis when incubated with LCMV in cell culture; however, the low amount of cell death for virus-co-cultured NK cells was insufficient to account for the observed disappearance of this subset. Our observations in primates are similar to those seen in LCMV-infected mice, where decreased circulating NK cells were attributed to margination and cell death. Thus, the disappearance of these cells during acute hemorrhagic fever in rhesus macaques may be a cytokine-induced lymphopenia common to many virus infections.
Resumo:
The generation of an antigen-specific T-lymphocyte response is a complex multi-step process. Upon T-cell receptor-mediated recognition of antigen presented by activated dendritic cells, naive T-lymphocytes enter a program of proliferation and differentiation, during the course of which they acquire effector functions and may ultimately become memory T-cells. A major goal of modern immunology is to precisely identify and characterize effector and memory T-cell subpopulations that may be most efficient in disease protection. Sensitive methods are required to address these questions in exceedingly low numbers of antigen-specific lymphocytes recovered from clinical samples, and not manipulated in vitro. We have developed new techniques to dissect immune responses against viral or tumor antigens. These allow the isolation of various subsets of antigen-specific T-cells (with major histocompatibility complex [MHC]-peptide multimers and five-color FACS sorting) and the monitoring of gene expression in individual cells (by five-cell reverse transcription-polymerase chain reaction [RT-PCR]). We can also follow their proliferative life history by flow-fluorescence in situ hybridization (FISH) analysis of average telomere length. Recently, using these tools, we have identified subpopulations of CD8+ T-lymphocytes with distinct proliferative history and partial effector-like properties. Our data suggest that these subsets descend from recently activated T-cells and are committed to become differentiated effector T-lymphocytes.
Overexpression of SMARCE1 is associated with CD8+ T-cell infiltration in early stage ovarian cancer.
Resumo:
T-lymphocyte infiltration in ovarian tumors has been linked to a favorable prognosis, hence, exploring the mechanism of T-cell recruitment in the tumor is warranted. We employed a differential expression analysis to identify genes over-expressed in early stage ovarian cancer samples that contained CD8 infiltrating T-lymphocytes. Among other genes, we discovered that TTF1, a regulator of ribosomal RNA gene expression, and SMARCE1, a factor associated with chromatin remodeling were overexpressed in first stage CD8+ ovarian tumors. TTF1 and SMARCE1 mRNA levels showed a strong correlation with the number of intra-tumoral CD8+ cells in ovarian tumors. Interestingly, forced overexpression of SMARCE1 in SKOV3 ovarian cancer cells resulted in secretion of IL8, MIP1b and RANTES chemokines in the supernatant and triggered chemotaxis of CD8+ lymphocytes in a cell culture assay. The potency of SMARCE1-mediated chemotaxis appeared comparable to that caused by the transfection of the CXCL9 gene, coding for a chemokine known to attract T-cells. Our analysis pinpoints TTF1 and SMARCE1 as genes potentially involved in cancer immunology. Since both TTF1 and SMARCE1 are involved in chromatin remodeling, our results imply an epigenetic regulatory mechanism for T-cell recruitment that invites deciphering.
Resumo:
CONTEXT Relationships between mind and body have gradually become accepted. Yogic practices cause modulation of the immune system. Transcendental meditation (TM) is a specific form of mantra meditation. We reported previously different plasma levels of catecholamines and pituitary hormones in TM practitioners comparing with a control group, and patterns of the daytime secretion of these hormones different from those normally described. AIMS The aim of the following study is to evaluate the immune system in these meditation practitioners, by determining leukocytes and lymphocytes subsets. METHODS TM group consisted of 19 subjects who regularly practice either TM or the more advanced Sidhi-TM technique. A control group consisted of 16 healthy subjects who had not previously used any relaxation technique. Total leukocytes, granulocytes, lymphocytes and monocytes were counted by an automated quantitative hematology analyzer, whereas lymphocytes subsets were determined by flow cytometry. Samples were taken from each subject at 0900 h after an overnight fast. RESULTS The results indicated that the TM group had higher values than the control group in CD3+CD4-CD8+ lymphocytes (P < 0.05), B lymphocytes (P < 0.01) and natural killer cells (P < 0.01), whereas CD3+CD4+CD8- lymphocytes showed low levels in meditation practitioners (P < 0.001). No significant differences were observed in total leukocytes, granulocytes, monocytes, total lymphocytes or CD3+ lymphocytes comparing both groups. CONCLUSIONS The technique of meditation studied seems to have a significant effect on immune cells, manifesting in the different circulating levels of lymphocyte subsets analyzed. The significant effect of TM on the neuroendocrine axis and its relationship with the immune system may partly explain our results.
Resumo:
Anaplastic large cell lymphoma (ALCL) is a main type of T-cell lymphomas and comprises three distinct entities: systemic anaplastic lymphoma kinase (ALK) positive, systemic ALK(-) and cutaneous ALK(-) ALCL (cALCL). Little is known about their pathogenesis and their cellular origin, and morphological and immunophenotypical overlap exists between ALK(-) ALCL and classical Hodgkin lymphoma (cHL). We conducted gene expression profiling of microdissected lymphoma cells of five ALK(+) and four ALK(-) systemic ALCL, seven cALCL and sixteen cHL, and of eight subsets of normal T and NK cells. The analysis supports a derivation of ALCL from activated T cells, but the lymphoma cells acquired a gene expression pattern hampering an assignment to a CD4(+), CD8(+) or CD30(+) T-cell origin. Indeed, ALCL display a down-modulation of many T-cell characteristic molecules. All ALCL types show significant expression of NFkappaB target genes and upregulation of genes involved in oncogenesis (e.g. EZH2). Surprisingly, few genes are differentially expressed between systemic and cALCL despite their different clinical behaviour, and between ALK(-) ALCL and cHL despite their different cellular origin. ALK(+) ALCL are characterized by expression of genes regulated by pathways constitutively activated by ALK. This study provides multiple novel insights into the molecular biology and pathogenesis of ALCL.
Resumo:
Using H-2Kd-restricted CTL clones, which are specific for a photoreactive derivative of the Plasmodium berghei circumsporozoite peptide PbCS(252-260) (SYIPSAEKI) and permit assessment of TCR-ligand interactions by TCR photoaffinity labeling, we have previously identified several peptide derivative variants for which TCR-ligand binding and the efficiency of Ag recognition deviated by fivefold or more. Here we report that the functional CTL response (cytotoxicity and IFN-gamma production) correlated with the rate of TCR-ligand complex dissociation, but not the avidity of TCR-ligand binding. While peptide antagonists exhibited very rapid TCR-ligand complex dissociation, slightly slower dissociation was observed for strong agonists. Conversely and surprisingly, weak agonists typically displayed slower dissociation than the wild-type agonists. Acceleration of TCR-ligand complex dissociation by blocking CD8 participation in TCR-ligand binding increased the efficiency of Ag recognition in cases where dissociation was slow. In addition, permanent TCR engagement by TCR-ligand photocross-linking completely abolished sustained intracellular calcium mobilization, which is required for T cell activation. These results indicate that the functional CTL response depends on the frequency of serial TCR engagement, which, in turn, is determined by the rate of TCR-ligand complex dissociation.
Resumo:
Like most somatic human cells, T lymphocytes have a limited replicative life span. This phenomenon, called senescence, presents a serious barrier to clinical applications that require large numbers of Ag-specific T cells such as adoptive transfer therapy. Ectopic expression of hTERT, the human catalytic subunit of the enzyme telomerase, permits fibroblasts and endothelial cells to avoid senescence and to become immortal. In an attempt to immortalize normal human CD8(+) T lymphocytes, we infected bulk cultures or clones of these cells with a retrovirus transducing an hTERT cDNA clone. More than 90% of transduced cells expressed the transgene, and the cell populations contained high levels of telomerase activity. Measuring the content of total telomere repeats in individual cells (by flowFISH) we found that ectopic hTERT expression reversed the gradual loss of telomeric DNA observed in control populations during long term culture. Telomere length in transduced cells reached the levels observed in freshly isolated normal CD8(+) lymphocytes. Nevertheless, all hTERT-transduced populations stopped to divide at the same time as nontransduced or vector-transduced control cells. When kept in IL-2 the arrested cells remained alive. Our results indicate that hTERT may be required but is not sufficient to immortalize human T lymphocytes.
Resumo:
The mechanism by which the immune system produces effector and memory T cells is largely unclear. To allow a large-scale assessment of the development of single naive T cells into different subsets, we have developed a technology that introduces unique genetic tags (barcodes) into naive T cells. By comparing the barcodes present in antigen-specific effector and memory T cell populations in systemic and local infection models, at different anatomical sites, and for TCR-pMHC interactions of different avidities, we demonstrate that under all conditions tested, individual naive T cells yield both effector and memory CD8+ T cell progeny. This indicates that effector and memory fate decisions are not determined by the nature of the priming antigen-presenting cell or the time of T cell priming. Instead, for both low and high avidity T cells, individual naive T cells have multiple fates and can differentiate into effector and memory T cell subsets.
Resumo:
In human somatic cells, including T lymphocytes, telomeres progressively shorten with each cell division, eventually leading to a state of cellular senescence. Ectopic expression of telomerase results in the extension of their replicative life spans without inducing changes associated with transformation. However, it is yet unknown whether somatic cells that overexpress telomerase are physiologically indistinguishable from normal cells. Using CD8+ T lymphocyte clones overexpressing telomerase, we investigated the molecular mechanisms that regulate T cell proliferation. In this study, we show that early passage T cell clones transduced or not with human telomerase reverse transcriptase displayed identical growth rates upon mitogenic stimulation and no marked global changes in gene expression. Surprisingly, reduced proliferative responses were observed in human telomerase reverse transcriptase-transduced cells with extended life spans. These cells, despite maintaining high expression levels of genes involved in the cell cycle progression, also showed increased expression in several genes found in common with normal aging T lymphocytes. Strikingly, late passage T cells overexpressing telomerase accumulated the cyclin-dependent inhibitors p16Ink4a and p21Cip1 that have largely been associated with in vitro growth arrest. We conclude that alternative growth arrest mechanisms such as those mediated by p16Ink4a and p21Cip1 still remained intact and regulated the growth potential of cells independently of their telomere status.
Resumo:
Protective T cell responses againstpersistent viruses like Epstein-Barrvirus in healthy individuals are characterizedby a remarkable stability ofthe T cell receptor (TCR) clonotypicrepertoire, with highly preservedclonotype selection and persistenceover time. Here, we extended recentwork to the study of EBV-specificCD8 T cell responses in melanomapatients treated by short-term chemotherapyfor transient lymphodepletion,followed by adoptive cell transfer(ACT) and immune reconstitutionfor cancer therapy. After this treatment,we observed increased proportionsof virus-specific T cells in 3/5patients, accompanied by a more differentiatedphenotype (EMRA/CD28neg), compared to specific cells ofhealthy individuals. Yet, similarly tohealthy donors, clonotype selectionand composition of virus-specific Tcells varied along the pathway of celldifferentiation, with some clonotypesthat were selected with late differentiation,while others were not. Aftertreatment, we did not observe noveldominant clonotypes, likely related toabsence of EBV reactivation measuredas viral load levels by quantitativePCR in PBMCs and antibody levelsin plasma samples. Furthermore,public TCR BV signatures were frequentlyfound within T cell clonotypesthat dominated the repertoiresof patients, in line with those observedin healthy individuals. Ourfindings indicate that even in situationswhere the immune system isstrongly challenged such as followinglymphodepletion and homeostatic repopulation,cytotoxic T cells specificfor EBV remain strikingly stable interms of clonotype selection and com-position along T cell differentiation.We are currently characterizing theclonotype selection and gene expressionprofiles of single EBV-specificCD8 T lymphocytes sorted ex-vivo inone patient who underwent two cyclesof lymphodepletion with escaladingdoses of chemotherapy overone-year interval. Observations madefrom this setting will provide additionalinsight into the degree of stabilityof virus specific T cells, and changesin the expression levels of genesimportant for cytolytic function andlong-term survival of T cells. Thiswork is supported by the Swiss NationalCenter of Competence in Research(NCCR) Molecular Oncology,and the Swiss National Science Foundation.
Resumo:
The reason why EBV-specific cellular immune responses are abnormal in multiple sclerosis (MS) patients is still missing. In this exploratory pilot study, we assessed IL-1beta, IL-2, IL-4, IL-6, IL-10, IL-17, IFN-gamma, TGF-beta1 and FOXP3 mRNA expression in EBV-stimulated highly differentiated T cells (T(HD)) of MS patients and healthy controls (HC). We found increased levels of IFN-gamma and IL-4 mRNA in CD8+ T(HD) cells of MS patients. All the other tested molecules were expressed similarly in MS patients and HC. Interestingly, increased IFN-gamma and IL-4 suggest that the control of EBV replication may be insufficient in MS patients.
Resumo:
OBJECTIVE Streptozotocin (STZ) is the most widely used diabetogenic agent in animal models of islet transplantation. However, the immunomodifying effects of STZ and the ensuing hyperglycemia on lymphocyte subsets, particularly on T regulatory cells (Tregs), remain poorly understood. RESEARCH DESIGN AND METHODS This study evaluated how STZ-induced diabetes affects adaptive immunity and the consequences thereof on allograft rejection in murine models of islet and skin transplantation. The respective toxicity of STZ and hyperglycemia on lymphocyte subsets was tested in vitro. The effect of hyperglycemia was assessed independently of STZ in vivo by the removal of transplanted syngeneic islets, using an insulin pump, and with rat insulin promoter diphtheria toxin receptor transgenic mice. RESULTS Early lymphopenia in both blood and spleen was demonstrated after STZ administration. Direct toxicity of STZ on lymphocytes, particularly on CD8(+) cells and B cells, was shown in vitro. Hyperglycemia also correlated with blood and spleen lymphopenia in vivo but was not lymphotoxic in vitro. Independently of hyperglycemia, STZ led to a relative increase of Tregs in vivo, with the latter retaining their suppressive capacity in vitro. The higher frequency of Tregs was associated with Treg proliferation in the blood, but not in the spleen, and higher blood levels of transforming growth factor-β. Finally, STZ administration delayed islet and skin allograft rejection compared with naive mice. CONCLUSIONS These data highlight the direct and indirect immunosuppressive effects of STZ and acute hyperglycemia, respectively. Thus, these results have important implications for the future development of tolerance-based protocols and their translation from the laboratory to the clinic.