913 resultados para C-jun Kinase


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Activating mutations in the Kit receptor tyrosine kinase have been identified in both rodent and human mast cell leukemia. One activating Kit mutation substitutes a valine for aspartic acid at codon 816 (D816V) and is frequently observed in human mastocytosis. Mutation at the equivalent position in the murine c-kit gene, involving a substitution of tyrosine for aspartic acid (D814Y), has been described in the mouse mastocytoma cell line P815. We have investigated the mechanism of oncogenic activation by this mutation. Expression of this mutant Kit receptor tyrosine kinase in a mast cell line led to the selective tyrosine phosphorylation of a 130-kDa protein and the degradation, through the ubiquitin-dependent proteolytic pathway, of a 65-kDa phosphoprotein. The 65-kDa protein was identified as the src homology domain 2 (SH2)-containing protein tyrosine phosphatase SHP-1, a negative regulator of signaling by Kit and other hematopoietic receptors, and the protein product of the murine motheaten locus. This mutation also altered the sites of receptor autophosphorylation and peptide substrate selectivity. Thus, this mutation activates the oncogenic potential of Kit by a novel mechanism involving an alteration in Kit substrate recognition and the degradation of SHP-1, an attenuator of the Kit signaling pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The TEL/PDGFβR fusion protein is the product of the t(5;12) translocation in patients with chronic myelomonocytic leukemia. The TEL/PDGFβR is an unusual fusion of a putative transcription factor, TEL, to a receptor tyrosine kinase. The translocation fuses the amino terminus of TEL, containing the helix-loop-helix (HLH) domain, to the transmembrane and cytoplasmic domain of the PDGFβR. We hypothesized that TEL/PDGFβR self-association, mediated by the HLH domain of TEL, would lead to constitutive activation of the PDGFβR tyrosine kinase domain and cellular transformation. Analysis of in vitro-translated TEL/PDGFβR confirmed that the protein self-associated and that self-association was abrogated by deletion of 51 aa within the TEL HLH domain. In vivo, TEL/PDGFβR was detected as a 100-kDa protein that was constitutively phosphorylated on tyrosine and transformed the murine hematopoietic cell line Ba/F3 to interleukin 3 growth factor independence. Transformation of Ba/F3 cells required the HLH domain of TEL and the kinase activity of the PDGFβR portion of the fusion protein. Immunoblotting demonstrated that TEL/PDGFβR associated with multiple signaling molecules known to associate with the activated PDGFβR, including phospholipase C γ1, SHP2, and phosphoinositol-3-kinase. TEL/PDGFβR is a novel transforming protein that self-associates and activates PDGFβR-dependent signaling pathways. Oligomerization of TEL/PDGFβR that is dependent on the TEL HLH domain provides further evidence that the HLH domain, highly conserved among ETS family members, is a self-association motif.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Selectins mediate rolling, the initial step of leukocyte adhesion to endothelial cells [Springer, T. A. (1995) Annu. Rev. Physiol. 57, 827–872 and Butcher, E. C. (1991) Cell 67, 1033–1036]. In this study we show that l-selectin triggering of Jurkat cells using different antibodies or glycomimetics resulted in activation of the src-tyrosine kinase p56lck; tyrosine phosphorylation of intracellular proteins, in particular mitogen-activating protein kinase and l-selectin; and association of Grb2/Sos with l-selectin. This association correlated with an activation of p21Ras, mitogen-activating protein kinase, Rac2, and a transient increase of O2− synthesis. Stimulation of the Ras pathway by l-selectin requires functional p56lck, since p56lck-deficient Jurkat cells (JCaM1.6) do not show tyrosine phosphorylation, association of l-selectin with Grb2/Sos, and activation of Ras upon l-selectin triggering. Transfection of JCaM1.6 cells with p56lck reconstitutes the observed signaling events. Genetic inhibition of Ras or Rac2 prevented Rac2 stimulation and O2− synthesis, respectively. The specificity and the physiological significance of the observed signaling cascade is indicated by stimulation of l-selectin-transfected P815, l-selectin-positive CEM or peripheral blood lymphocytes resulting in the same activation events as in Jurkat cells. Our results point to a signaling cascade from l-selectin via p56lck, Grb2/Sos, Ras, and Rac2 to O2− .

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long-term potentiation (LTP) is an increase in synaptic responsiveness thought to be involved in mammalian learning and memory. The localization (presynaptic and/or postsynaptic) of changes underlying LTP has been difficult to resolve with current electrophysiological techniques. Using a biochemical approach, we have addressed this issue and attempted to identify specific molecular mechanisms that may underlie LTP. We utilized a novel multiple-electrode stimulator to produce LTP in a substantial portion of the synapses in a hippocampal CA1 minislice and tested the effects of such stimulation on the presynaptic protein synapsin I. LTP-inducing stimulation produced a long-lasting 6-fold increase in the phosphorylation of synapsin I at its Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) sites without affecting synapsin I levels. This effect was fully blocked by either the N-methyl-d-aspartate receptor antagonist d(−)-2-amino-5-phosphonopentanoic acid (APV) or the CaM kinase II inhibitor KN-62. Our results indicate that LTP expression is accompanied by persistent changes in presynaptic phosphorylation, and specifically that presynaptic CaM kinase II activity and synapsin I phosphorylation may be involved in LTP expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA damage induced by ionizing radiation (IR) activates p53, leading to the regulation of downstream pathways that control cell-cycle progression and apoptosis. However, the mechanisms for the IR-induced p53 activation and the differential activation of pathways downstream of p53 are unclear. Here we provide evidence that the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) serves as an upstream effector for p53 activation in response to IR, linking DNA damage to apoptosis. DNA-PKcs knockout (DNA-PKcs−/−) mice were exposed to whole-body IR, and the cell-cycle and apoptotic responses were examined in their thymuses. Our data show that IR induction of apoptosis and Bax expression, both mediated via p53, was significantly suppressed in the thymocytes of DNA-PKcs−/− mice. In contrast, IR-induced cell-cycle arrest and p21 expression were normal. Thus, DNA-PKcs deficiency selectively disrupts p53-dependent apoptosis but not cell-cycle arrest. We also confirmed previous findings that p21 induction was attenuated and cell-cycle arrest was defective in the thymoctyes of whole body-irradiated Atm−/− mice, but the apoptotic response was unperturbed. Taken together, our results support a model in which the upstream effectors DNA-PKcs and Atm selectively activate p53 to differentially regulate cell-cycle and apoptotic responses. Whereas Atm selects for cell-cycle arrest but not apoptosis, DNA-PKcs selects for apoptosis but not cell-cycle arrest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report successful electro-gene therapy (EGT) by using plasmid DNA for tumor-bearing mice. Subcutaneously inoculated CT26 tumor was subjected to EGT, which consists of intratumoral injection of a naked plasmid encoding a marker gene or a therapeutic gene, followed by in vivo electroporation (EP). When this treatment modality is carried out with the plasmid DNA for the green fluorescent protein gene, followed by in vivo EP with the optimized pulse parameters, numerous intensely bright green fluorescent signals appeared within the tumor. EGT, by using the “A” fragment of the diphtheria toxin gene significantly inhibited the growth of tumors, by about 30%, on the flank of mice. With the herpes simplex virus thymidine kinase gene, followed by systemic injection of ganciclovir, EGT was far more effective in retarding tumor growth, varying between 50% and 90%, compared with the other controls. Based on these results, it appears that EGT can be used successfully for treating murine solid tumors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The suppressors of cytokine signaling (SOCS) family of proteins act as intracellular inhibitors of several cytokine signal transduction pathways. Their expression is induced by cytokine activation of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway and they act as a negative feedback loop by subsequently inhibiting the JAK/STAT pathway either by direct interaction with activated JAKs or with the receptors. These interactions are mediated at least in part by the SH2 domain of SOCS proteins but these proteins also contain a highly conserved C-terminal homology domain termed the SOCS box. Here we show that the SOCS box mediates interactions with elongins B and C, which in turn may couple SOCS proteins and their substrates to the proteasomal protein degradation pathway. Analogous to the family of F-box-containing proteins, it appears that the SOCS proteins may act as adaptor molecules that target activated cell signaling proteins to the protein degradation pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bruton’s tyrosine kinase (Btk) plays pivotal roles in mast cell activation as well as in B cell development. Btk mutations lead to severe impairments in proinflammatory cytokine production induced by cross-linking of high-affinity IgE receptor on mast cells. By using an in vitro assay to measure the activity that blocks the interaction between protein kinase C and the pleckstrin homology domain of Btk, terreic acid (TA) was identified and characterized in this study. This quinone epoxide specifically inhibited the enzymatic activity of Btk in mast cells and cell-free assays. TA faithfully recapitulated the phenotypic defects of btk mutant mast cells in high-affinity IgE receptor-stimulated wild-type mast cells without affecting the enzymatic activities and expressions of many other signaling molecules, including those of protein kinase C. Therefore, this study confirmed the important roles of Btk in mast cell functions and showed the usefulness of TA in probing into the functions of Btk in mast cells and other immune cell systems. Another insight obtained from this study is that the screening method used to identify TA is a useful approach to finding more efficacious Btk inhibitors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

G-substrate, an endogenous substrate for cGMP-dependent protein kinase, exists almost exclusively in cerebellar Purkinje cells, where it is possibly involved in the induction of long-term depression. A G-substrate cDNA was identified by screening expressed sequence tag databases from a human brain library. The deduced amino acid sequence of human G-substrate contained two putative phosphorylation sites (Thr-68 and Thr-119) with amino acid sequences [KPRRKDT(p)PALH] that were identical to those reported for rabbit G-substrate. G-substrate mRNA was expressed almost exclusively in the cerebellum as a single transcript. The human G-substrate gene was mapped to human chromosome 7p15 by radiation hybrid panel analysis. In vitro translation products of the cDNA showed an apparent molecular mass of 24 kDa on SDS/PAGE which was close to that of purified rabbit G-substrate (23 kDa). Bacterially expressed human G-substrate is a heat-stable and acid-soluble protein that cross-reacts with antibodies raised against rabbit G-substrate. Recombinant human G-substrate was phosphorylated efficiently by cGMP-dependent protein kinase exclusively at Thr residues, and it was recognized by antibodies specific for rabbit phospho-G-substrate. The amino acid sequences surrounding the sites of phosphorylation in G-substrate are related to those around Thr-34 and Thr-35 of the dopamine- and cAMP-regulated phosphoprotein DARPP-32 and inhibitor-1, respectively, two potent inhibitors of protein phosphatase 1. However, purified G-substrate phosphorylated by cGMP-dependent protein kinase inhibited protein phosphatase 2A more effectively than protein phosphatase 1, suggesting a distinct role as a protein phosphatase inhibitor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 5′-untranslated region of hepatitis C virus (HCV) is highly conserved, folds into a complex secondary structure, and functions as an internal ribosome entry site (IRES) to initiate translation of HCV proteins. We have developed a selection system based on a randomized hairpin ribozyme gene library to identify cellular factors involved in HCV IRES function. A retroviral vector ribozyme library with randomized target recognition sequences was introduced into HeLa cells, stably expressing a bicistronic construct encoding the hygromycin B phosphotransferase gene and the herpes simplex virus thymidine kinase gene (HSV-tk). Translation of the HSV-tk gene was mediated by the HCV IRES. Cells expressing ribozymes that inhibit HCV IRES-mediated translation of HSV-tk were selected via their resistance to both ganciclovir and hygromycin B. Two ribozymes reproducibly conferred the ganciclovir-resistant phenotype and were shown to inhibit IRES-mediated translation of HCV core protein but did not inhibit cap-dependent protein translation or cell growth. The functional targets of these ribozymes were identified as the gamma subunits of human eukaryotic initiation factors 2B (eIF2Bγ) and 2 (eIF2γ), respectively. The involvement of eIF2Bγ and eIF2γ in HCV IRES-mediated translation was further validated by ribozymes directed against additional sites within the mRNAs of these genes. In addition to leading to the identification of cellular IRES cofactors, ribozymes obtained from this cellular selection system could be directly used to specifically inhibit HCV viral translation, thereby facilitating the development of new antiviral strategies for HCV infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pathogens, inflammatory signals, and stress cause acute transcriptional responses in cells. The induced expression of genes in response to these signals invariably involves transcription factors of the NF-κB and AP-1/ATF families. Activation of NF-κB factors is thought to be mediated primarily via IκB kinases (IKK), whereas that of AP-1/ATF can be mediated by stress-activated protein kinases (SAPKs; also named Jun kinases or JNKs). IKKα and IKKβ are two catalytic subunits of a core IKK complex that also contains the regulatory subunit NEMO (NF-κB essential modulator)/IKKγ. The latter protein is essential for activation of the IKKs, but its mechanism of action is not known. Here we describe the molecular cloning of CIKS (connection to IKK and SAPK/JNK), a previously unknown protein that directly interacts with NEMO/IKKγ in cells. When ectopically expressed, CIKS stimulates IKK and SAPK/JNK kinases and it transactivates an NF-κB-dependent reporter. Activation of NF-κB is prevented in the presence of kinase-deficient, interfering mutants of the IKKs. CIKS may help to connect upstream signaling events to IKK and SAPK/JNK modules. CIKS could coordinate the activation of two stress-induced signaling pathways, functions reminiscent of those noted for tumor necrosis factor receptor-associated factor adaptor proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The common cytokine receptor γ chain (γc), a shared component of the receptors for IL-2, IL-4, IL-7, IL-9, and IL-15, is critical for the development and function of lymphocytes. The cytoplasmic domain of γc consists of 85 aa, in which the carboxyl-terminal 48 aa are essential for its interaction with and activation of the Janus kinase, Jak3. Evidence has been provided that Jak3-independent signals might be transmitted via the residual membrane-proximal region; however, its role in vivo remains totally unknown. In the present study, we expressed mutant forms of γc, which lack either most of the cytoplasmic domain or only the membrane-distal Jak3-binding region, on a γc null background. We demonstrate that, unlike γc or Jak3 null mice, expression of the latter, but not the former mutant, restores T lymphopoiesis in vivo, accompanied by strong expression of Bcl-2. On the other hand, the in vitro functions of the restored T cells still remained impaired. These results not only reveal the hitherto unknown role of the γc membrane-proximal region, but also suggest the differential requirement of the cytoplasmic subregions of γc in T cell development and function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

β1-integrin engagement on normal (NL) CD34+ cells increases levels of the cyclin-dependent kinase inhibitor (cdki), p27Kip, decreases cdk2 activity, and inhibits G1/S-phase progression. In contrast, β1-integrin engagement on chronic myelogenous leukemia (CML) CD34+ cells does not inhibit G1/S progression. We now show that, in CML, baseline p27Kip levels are significantly higher than in NL CD34+ cells, but adhesion to fibronectin (FN) does not increase p27Kip levels. p27Kip mRNA levels are similar in CML and NL CD34+ cells and remain unchanged after adhesion, suggesting posttranscriptional regulation. Despite the elevated p27Kip levels, cdk2 kinase activity is similar in CML and NL CD34+ cells. In NL CD34+ cells, >90% of p27Kip is located in the nucleus, where it binds to cdk2 after integrin engagement. In CML CD34+ cells, however, >80% of p27Kip is located in the cytoplasm even in FN-adherent cells, and significantly less p27Kip is bound to cdk2. Thus, presence of BCR/ABL induces elevated levels of p27Kip and relocation of p27Kip to the cytoplasm, which contributes to the loss of integrin-mediated proliferation inhibition, characteristic of CML.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two-component signaling systems involving receptor-histidine kinases are ubiquitous in bacteria and have been found in yeast and plants. These systems provide the major means by which bacteria communicate with each other and the outside world. Remarkably, very little is known concerning the extracellular ligands that presumably bind to receptor-histidine kinases to initiate signaling. The two-component agr signaling circuit in Staphylococcus aureus is one system where the ligands are known in chemical detail, thus opening the door for detailed structure–activity relationship studies. These ligands are short (8- to 9-aa) peptides containing a thiolactone structure, in which the α-carboxyl group of the C-terminal amino acid is linked to the sulfhydryl group of a cysteine, which is always the fifth amino acid from the C terminus of the peptide. One unique aspect of the agr system is that peptides that activate virulence expression in one group of S. aureus strains also inhibit virulence expression in other groups of S. aureus strains. Herein, it is demonstrated by switching the receptor-histidine kinase, AgrC, between strains of different agr specificity types, that intragroup activation and intergroup inhibition are both mediated by the same group-specific receptors. These results have facilitated the development of a global inhibitor of virulence in S. aureus, which consists of a truncated version of one of the naturally occurring thiolactone peptides.