938 resultados para Business intelligence, data warehouse, sql server
Resumo:
Whether for investigative or intelligence aims, crime analysts often face up the necessity to analyse the spatiotemporal distribution of crimes or traces left by suspects. This article presents a visualisation methodology supporting recurrent practical analytical tasks such as the detection of crime series or the analysis of traces left by digital devices like mobile phone or GPS devices. The proposed approach has led to the development of a dedicated tool that has proven its effectiveness in real inquiries and intelligence practices. It supports a more fluent visual analysis of the collected data and may provide critical clues to support police operations as exemplified by the presented case studies.
Resumo:
A recurring task in the analysis of mass genome annotation data from high-throughput technologies is the identification of peaks or clusters in a noisy signal profile. Examples of such applications are the definition of promoters on the basis of transcription start site profiles, the mapping of transcription factor binding sites based on ChIP-chip data and the identification of quantitative trait loci (QTL) from whole genome SNP profiles. Input to such an analysis is a set of genome coordinates associated with counts or intensities. The output consists of a discrete number of peaks with respective volumes, extensions and center positions. We have developed for this purpose a flexible one-dimensional clustering tool, called MADAP, which we make available as a web server and as standalone program. A set of parameters enables the user to customize the procedure to a specific problem. The web server, which returns results in textual and graphical form, is useful for small to medium-scale applications, as well as for evaluation and parameter tuning in view of large-scale applications, requiring a local installation. The program written in C++ can be freely downloaded from ftp://ftp.epd.unil.ch/pub/software/unix/madap. The MADAP web server can be accessed at http://www.isrec.isb-sib.ch/madap/.
Resumo:
Geographic information systems (GIS) and artificial intelligence (AI) techniques were used to develop an intelligent snow removal asset management system (SRAMS). The system has been evaluated through a case study examining snow removal from the roads in Black Hawk County, Iowa, for which the Iowa Department of Transportation (Iowa DOT) is responsible. The SRAMS is comprised of an expert system that contains the logical rules and expertise of the Iowa DOT’s snow removal experts in Black Hawk County, and a geographic information system to access and manage road data. The system is implemented on a mid-range PC by integrating MapObjects 2.1 (a GIS package), Visual Rule Studio 2.2 (an AI shell), and Visual Basic 6.0 (a programming tool). The system could efficiently be used to generate prioritized snowplowing routes in visual format, to optimize the allocation of assets for plowing, and to track materials (e.g., salt and sand). A test of the system reveals an improvement in snowplowing time by 1.9 percent for moderate snowfall and 9.7 percent for snowstorm conditions over the current manual system.
Resumo:
A better integration of the information conveyed by traces within intelligence-led framework would allow forensic science to participate more intensively to security assessments through forensic intelligence (part I). In this view, the collection of data by examining crime scenes is an entire part of intelligence processes. This conception frames our proposal for a model that promotes to better use knowledge available in the organisation for driving and supporting crime scene examination. The suggested model also clarifies the uncomfortable situation of crime scene examiners who must simultaneously comply with justice needs and expectations, and serve organisations that are mostly driven by broader security objectives. It also opens new perspective for forensic science and crime scene investigation, by the proposal to follow other directions than the traditional path suggested by dominant movements in these fields.
Resumo:
In this paper, we develop a new decision making model and apply it in political Surveys of economic climate collect opinions of managers about the short-term future evolution of their business. Interviews are carried out on a regular basis and responses measure optimistic, neutral or pessimistic views about the economic perspectives. We propose a method to evaluate the sampling error of the average opinion derived from a particular type of survey data. Our variance estimate is useful to interpret historical trends and to decide whether changes in the index from one period to another are due to a structural change or whether ups and downs can be attributed to sampling randomness. An illustration using real data from a survey of business managers opinions is discussed.
Resumo:
The Attorney General’s Consumer Protection Division receives hundreds of calls and consumer complaints every year. Follow these tips to avoid unexpected expense and disappointments. This record is about: The Drive to Destroy: Removing data from computer hard drives, storage devices & wireless phones
Resumo:
The newsworthiness of an event is partly determined by how unusual it isand this paper investigates the business cycle implications of this fact. In particular, weanalyze the consequences of information structures in which some types of signals are morelikely to be observed after unusual events. Such signals may increase both uncertainty anddisagreement among agents and when embedded in a simple business cycle model, can helpus understand why we observe (i) occasional large changes in macro economic aggregatevariables without a correspondingly large change in underlying fundamentals (ii) persistentperiods of high macroeconomic volatility and (iii) a positive correlation between absolutechanges in macro variables and the cross-sectional dispersion of expectations as measuredby survey data. These results are consequences of optimal updating by agents when theavailability of some signals is positively correlated with tail-events. The model is estimatedby likelihood based methods using individual survey responses and a quarterly time seriesof total factor productivity along with standard aggregate time series. The estimated modelsuggests that there have been episodes in recent US history when the impact on outputof innovations to productivity of a given magnitude was more than eight times as largecompared to other times.
Resumo:
Aquest treball té com a objectiu principal conèixer si hi ha millora en el control de la malaltia d’una persona que pateix un trastorn mental sever quan disposa d’un suport adequat de la família. Els objectius específics marcats són, avaluar la càrrega familiar que suposa tenir la responsabilitat de cuidar un familiar amb malaltia mental, conèixer les actituds dels familiars de persones que pateixen una malaltia mental, involucrar a la família dins de la teràpia del familiar amb malaltia mental severa, i aconseguir un grau de cooperació i comunicació favorable de la família al pacient. Es tracta d’un estudi d’investigació quantitatiu, transversal i de tipus analític, el qual la mostra de la població estudiada estarà composta de 100 pacients entre 20 i 30 anys amb diagnòstic de trastorn mental sever segons el DSM-IV, atesos durant l’últim any en el Centre de Salut Mental d’Adults de Vic i els seus cuidadors principals o persones més properes. Es realitzarà recollida de dades a través de la revisió de les històries clíniques, informació facilitada pel terapeuta que tracta al pacient i entrevistes als familiars cuidadors o persona més propera i als mateixos pacients. Aquesta entrevista la faran professionals entrenats i competents. Amb tot això s’establirà una correlació entre les variables d’estrès, suport als familiars i el desenvolupament dels rols, i s’agruparan les variables de manera que quedin estructurades en subgrups.
Resumo:
La Universitat de Vic disposa, entre altres equips, d’una cèl·lula flexible de fabricació, del fabricant Festo, que simula un procés de formació de palets amb els productes que es disposen en un magatzem intermedi. Aquesta cèl·lula està composta de quatre estacions de muntatge diferenciades (càrrega de palets, càrrega de plaques, magatzem intermedi i transport). Cada una disposa d'un PLC SIEMENS S7-300 per la seva automatització, i tots aquests es troben interconnectats amb una xarxa industrial Profibus. L'objectiu d'aquest projecte és implantar el sistema SCADA Vijeo Citect pel control i supervisió de l'estació magatzem d'aquesta cèl·lula flexible de fabricació, establint també un intercanvi de dades entre l'SCADA i el Microsoft Access, per poder ser utilitzat per la docència. Aquest projecte s'ha desenvolupat en cinc fases diferents: 1. La primera fase s'ha dedicat a l'automatització pròpiament de l'estació magatzem a partir de l'autòmat programable Siemens S7-300 i complint amb les necessitats plantejades. 2. En la segona fase s'ha programat i establert la comunicació per l'intercanvi de dades (lectura i escriptura) entre el sistema SCADA Vijeo Citect i la base de dades de Microsoft Access. 3. En la tercera fase s'ha elaborat i programat l'entorn gràfic de supervisió i control del procés a partir del sistema SCADA Vijeo Citect. 4. En la quarta fase s'ha instal·lat un OPC Server en el PC i s'ha establert la comunicació entre el PLC i el sistema SCADA. 5. Finalment s'ha anat revisant i depurant les diferents programacions i comunicacions per tal de que el sistema funcioni com a un conjunt.
Resumo:
The M-Coffee server is a web server that makes it possible to compute multiple sequence alignments (MSAs) by running several MSA methods and combining their output into one single model. This allows the user to simultaneously run all his methods of choice without having to arbitrarily choose one of them. The MSA is delivered along with a local estimation of its consistency with the individual MSAs it was derived from. The computation of the consensus multiple alignment is carried out using a special mode of the T-Coffee package [Notredame, Higgins and Heringa (T-Coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 2000; 302: 205-217); Wallace, O'Sullivan, Higgins and Notredame (M-Coffee: combining multiple sequence alignment methods with T-Coffee. Nucleic Acids Res. 2006; 34: 1692-1699)] Given a set of sequences (DNA or proteins) in FASTA format, M-Coffee delivers a multiple alignment in the most common formats. M-Coffee is a freeware open source package distributed under a GPL license and it is available either as a standalone package or as a web service from www.tcoffee.org.
Resumo:
Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.
Resumo:
The U.S. Environmental Protection Agency (EPA), the Alcoa – Davenport Works Facility (Alcoa), and concerned citizens and community leaders of Riverdale, Iowa requested the Iowa Department of Public Health (IDPH) Hazardous Waste Site Health Assessment Program to evaluate the health impacts of exposures to volatile organic vapors detected within residences located immediately to the west of the Alcoa property. This health consultation addresses inhalation exposure to individuals that may have occupied the currently vacant residences in which the air sampling was completed.
Resumo:
Medicine counterfeiting is a crime that has increased in recent years and now involves the whole world. Health and economic repercussions have led pharmaceutical industries and agencies to develop many measures to protect genuine medicines and differentiate them from counterfeits. Detecting counterfeit is chemically relatively simple for the specialists, but much more information can be gained from the analyses in a forensic intelligence perspective. Analytical data can feed criminal investigation and law enforcement by detecting and understanding the criminal phenomenon. Profiling seizures using chemical and packaging data constitutes a strong way to detect organised production and industrialised forms of criminality, and is the focus of this paper. Thirty-three seizures of a commonly counterfeited type of capsule have been studied. The results of the packaging and chemical analyses were gathered within an organised database. Strong linkage was found between the seizures at the different production steps, indicating the presence of a main counterfeit network dominating the market. The interpretation of the links with circumstantial data provided information about the production and the distribution of counterfeits coming from this network. This forensic intelligence perspective has the potential to be generalised to other types of products. This may be the only reliable approach to help the understanding of the organised crime phenomenon behind counterfeiting and to enable efficient strategic and operational decision making in an attempt to dismantle counterfeit network.
Resumo:
This paper proposes the use of an autonomous assistant mobile robot in order to monitor the environmental conditions of a large indoor area and develop an ambient intelligence application. The mobile robot uses single high performance embedded sensors in order to collect and geo-reference environmental information such as ambient temperature, air velocity and orientation and gas concentration. The data collected with the assistant mobile robot is analyzed in order to detect unusual measurements or discrepancies and develop focused corrective ambient actions. This paper shows an example of the measurements performed in a research facility which have enabled the detection and location of an uncomfortable temperature profile inside an office of the research facility. The ambient intelligent application has been developed by performing some localized ambient measurements that have been analyzed in order to propose some ambient actuations to correct the uncomfortable temperature profile.
Resumo:
Tutkimuksen tavoitteena on tutkia telekommunikaatioalalla toimivan kohdeyrityksen ohjelmistojen toimitusprosessia° Tutkimus keskittyy mallintamaan toimitusprosessin, määrittelemään roolit ja vastuualueet, havaitsemaan ongelmakohdat ja ehdottamaan prosessille kehityskohteita. Näitä tavoitteita tarkastellaan teoreettisten prosessimallinnustekniikoiden ja tietojohtamisen SECI-prosessikehyksen läpi. Tärkein tiedonkeruun lähde oli haastatteluihin perustuva tutkimus, johon osallistuvat kaikki kohdeprosessiin kuuluvat yksiköt. Mallinnettu toimitusprosessi antoi kohdeyritykselle paremman käsityksen tarkasteltavasta prosessista ja siinä toimivien yksiköiden rooleistaja vastuualueista. Parannusehdotuksia olivat tiedonjaon kanavoinnin määritteleminen, luottamuksen ja sosiaalisten verkostojen parantaminen, ja tietojohtamisen laajamittainen implementointi.