878 resultados para Bone fracture healing
Resumo:
Bone generation by autogenous cell transplantation in combination with a biodegradable scaffold is one of the most promising techniques being developed in craniofacial surgery. The objective of this combined in vitro and in vivo study was to evaluate the morphology and osteogenic differentiation of bone marrow derived mesenchymal progenitor cells and calvarial osteoblasts in a two-dimensional (2-D) and three-dimensional (3-D) culture environment (Part I of this study) and their potential in combination with a biodegradable scaffold to reconstruct critical-size calvarial defects in an autologous animal model [Part II of this study; see Schantz, J.T., et al. Tissue Eng. 2003;9(Suppl. 1):S-127-S-139; this issue]. New Zealand White rabbits were used to isolate osteoblasts from calvarial bone chips and bone marrow stromal cells from iliac crest bone marrow aspirates. Multilineage differentiation potential was evaluated in a 2-D culture setting. After amplification, the cells were seeded within a fibrin matrix into a 3-D polycaprolactone (PCL) scaffold system. The constructs were cultured for up to 3 weeks in vitro and assayed for cell attachment and proliferation using phase-contrast light, confocal laser, and scanning electron microscopy and the MTS cell metabolic assay. Osteogenic differentiation was analyzed by determining the expression of alkaline phosphatase (ALP) and osteocalcin. The bone marrow-derived progenitor cells demonstrated the potential to be induced to the osteogenic, adipogenic, and chondrogenic pathways. In a 3-D environment, cell-seeded PCL scaffolds evaluated by confocal laser microscopy revealed continuous cell proliferation and homogeneous cell distribution within the PCL scaffolds. On osteogenic induction mesenchymal progenitor cells (12 U/L) produce significantly higher (p < 0.05) ALP activity than do osteoblasts (2 U/L); however, no significant differences were found in osteocalcin expression. In conclusion, this study showed that the combination of a mechanically stable synthetic framework (PCL scaffolds) and a biomimetic hydrogel (fibrin glue) provides a potential matrix for bone tissue-engineering applications. Comparison of osteogenic differentiation between the two mesenchymal cell sources revealed a similar pattern.
Resumo:
Background The purpose of this study was to provide a detailed evaluation of adherence to nutrition supplements by patients with a lower limb fracture. Methods These descriptive data are from 49 nutritionally“ at-risk” patients aged 70+ years admitted to the hospital after a fall-related lower limb fracture and allocated to receive supplementation as part of a randomized, controlled trial. Supplementation commenced on day 7 and continued for 42 days. Prescribed volumes aimed to meet 45% of individually estimated theoretical energy requirements to meet the shortfall between literature estimates of energy intake and requirements. The supplement was administered by nursing staff on medication rounds in the acute or residential care settings and supervised through thrice-weekly home visits postdischarge. Results Median daily percent of the prescribed volume of nutrition supplement consumed averaged over the 42 days was 67% (interquartile range [IQR], 31–89, n = 49). There was no difference in adherence for gender, accommodation, cognition, or whether the supplement was self-administered or supervised. Twenty-three participants took some supplement every day, and a further 12 missed <5 days. For these 35 “nonrefusers,” adherence was 82% (IQR, 65–93), and they lost on average 0.7% (SD, 4.0%) of baseline weight over the 6 weeks of supplementation compared with a loss of 5.5% (SD, 5.4%) in the “refusers” (n = 14, 29%), p = .003. Conclusions We achieved better volume and energy consumption than previous studies of hip fracture patients but still failed to meet target supplement volumes prescribed to meet 45% of theoretical energy requirements. Clinicians should consider alternative methods of feeding such as a nasogastric tube, particularly in those patients where adherence to oral nutrition supplements is poor and dietary intake alone is insufficient to meet estimated energy requirements.
Resumo:
Computer aided technologies, medical imaging, and rapid prototyping has created new possibilities in biomedical engineering. The systematic variation of scaffold architecture as well as the mineralization inside a scaffold/bone construct can be studied using computer imaging technology and CAD/CAM and micro computed tomography (CT). In this paper, the potential of combining these technologies has been exploited in the study of scaffolds and osteochondral repair. Porosity, surface area per unit volume and the degree of interconnectivity were evaluated through imaging and computer aided manipulation of the scaffold scan data. For the osteochondral model, the spatial distribution and the degree of bone regeneration were evaluated. In this study the versatility of two softwares Mimics (Materialize), CTan and 3D realistic visualization (Skyscan) were assessed, too.
Resumo:
A hip fracture causes permanent changes to life style for older people. Further, two important mortality indicators found post operatively for this group include, the time until surgery after fracture, and pre-operative health status prior to surgery, yet no research is available investigating relationships between time to surgery and health status. The researchers aimed to establish the health status risks for patients aged over 65 years with a non-pathological hip fracture to guide nursing care interventions. A prospective cohort design was used to investigate relationships between time to surgery and measures on pre-operative health status indicators including, skin integrity risk, vigor, mental state, bowel function and continence. Twenty-nine patients with a mean age in years of 81.93 (SD,9.49), were recruited. The mean number of hours from time 1 assessment to surgery was 52.72 (SD,58.35) and the range was 1 hour to 219 hours. At Time 2, the mean scores of vigor and skin integrity risk were significantly higher, indicating poorer health status. A change in health status occurred but possibly due to the small sample size it was difficult to relate this result to time. However the results informed preoperative care prior to surgery, for this group.
Resumo:
Tissue engineering allows the design of functionally active cells within supportive bio-scaffolds to promote the development of new tissues such as cartilage and bone for the restoration of pathologically altered tissues. However, all bone tissue engineering applications are limited by a shortage of stem cells. The adult bone marrow stroma contains a subset of nonhematopoietic cells referred to as bone marrow mesenchymal stem cells (BMSCs). BMSCs are of interest because they are easily isolated from a small aspirate of bone marrow and readily generate single- cell-derived colonies. These cells have the capacity to undergo extensive replication in an undifferentiated state ex vivo. In addition, BMSCs have the potential to develop either in vitro or in vivo into distinct mesenchymal tissues, including bone, cartilage, fat, tendon, muscle, and marrow stroma. Thus, BMSCs are an attractive cell source for tissue engineering approaches. However, BMSCs are not homo- geneous and the quantity of stem cells decreases in the bone marrow in aged population. A sequential loss of lineage differentiation potential has been found in the mixed culture of bone marrow stromal cells due to a heterogenous popu- lation. Therefore, a number of studies have proposed that homogenous bone marrow stem cells can be generated from clonal culture of bone marrow cells and that BMSC clones have the greatest potential for the application of bone regeneration in vivo