941 resultados para Biochemical markers -- Mediterranean Sea


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isotopic ratios of Sr and Nd from lithogenic components of three isochronous core sections recovered from an east-west transect in the Eastern Mediterranean Sea (EMS) have been analyzed. The data are used for a quantitative estimate of the temporal and spatial variation of detrital flux to the EMS, assuming Saharan dust and Aegean/Nile particulate matter as dominant end members. It was established that the carbonate-free Saharan dust flux during deposition of the nonsapropel layers of marine oxygen isotope stage 5.4 (MIS 5.4) was similar to the present flux. During the deposition of sapropels S5 and S6, however, the Saharan dust input was drastically reduced and was not balanced by a change in the riverine influx at this time. Denser vegetation cover during more humid conditions may have reduced physical erosion and sediment removal in the source area. During marine oxygen isotope stage 6.2 (MIS 6.2) a pronounced increase of Saharan dust and detrital influx from the Aegean region is evident and implies more arid conditions in the southern and northern catchment areas. During this period, intersite variations are interpreted in terms of their geographic location relative to the seaways connecting the Aegean Sea and EMS. The width of the straits and hence the amount of sediment entering the eastern basins may have been affected by a low sea level that impeded interbasin sediment dispersal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temporal and spatial patterns in eastern North Atlantic sea-surface temperatures (SST) were reconstructed for marine isotope stage (MIS) 11c using a submeridional transect of five sediment cores. The SST reconstructions are based on planktic foraminiferal abundances and alkenone indices, and are supported by benthic and planktic stable isotope measurements, as well as by ice-rafted debris content in polar and middle latitudes. Additionally, the larger-scale dynamics of the precipitation regime over northern Africa and the western Mediterranean region was evaluated from iron concentrations in marine sediments off NW Africa and planktic d13C in combination with analysis of planktic foraminiferal abundances down to the species level in the Mediterranean Sea. Compared to the modern situation, it is revealed that during entire MIS 11c sensu stricto (ss), i.e., between 420 and 398 ka according to our age models, a cold SST anomaly in the Nordic seas co-existed with a warm SST anomaly in the middle latitudes and the subtropics, resulting in steeper meridional SST gradients than during the Holocene. Such a SST pattern correlates well with a prevalence of a negative mode of the modern North Atlantic Oscillation. We suggest that our scenario might partly explain the longer duration of wet conditions in the northern Africa during MIS 11c compared to the Holocene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Petrographic analysis of Quaternary terrigenous sand layers in eastern Mediterranean cores reveals distinct mineralogical differences between the Egyptian Shelf-Nile Cone region and the southern part of the Mediterranean Ridge. A compositionally and texturally immature suite in Ridge cores, mixed with a Nile-derived assemblage, identifies a fresh non-recycled mineral component derived from proximal igneous and metamorphic surface or near-surface exposures, probably in the south-central Ridge area rather than from distal African sources. The presence of such basement terrains would be consistent with a compressive thrust-belt origin for this part of the Mediterranean Ridge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

v. 3. The southeast of Italy, the shores of the Adriatic and Ionian Seas to Cape Matapan -- v. 4. From Cape Matapan (Greece) eastward, the Mediterranean archepelago, and the southern shore of the Mediterranean Sea, eastward to Ras Asjdir(Libia).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seagrass is expected to benefit from increased carbon availability under future ocean acidification. This hypothesis has been little tested by in situ manipulation. To test for ocean acidification effects on seagrass meadows under controlled CO2/pH conditions, we used a Free Ocean Carbon Dioxide Enrichment (FOCE) system which allows for the manipulation of pH as continuous offset from ambient. It was deployed in a Posidonia oceanica meadow at 11 m depth in the Northwestern Mediterranean Sea. It consisted of two benthic enclosures, an experimental and a control unit both 1.7 m**3, and an additional reference plot in the ambient environment (2 m**2) to account for structural artifacts. The meadow was monitored from April to November 2014. The pH of the experimental enclosure was lowered by 0.26 pH units for the second half of the 8-month study. The greatest magnitude of change in P. oceanica leaf biometrics, photosynthesis, and leaf growth accompanied seasonal changes recorded in the environment and values were similar between the two enclosures. Leaf thickness may change in response to lower pH but this requires further testing. Results are congruent with other short-term and natural studies that have investigated the response of P. oceanica over a wide range of pH. They suggest any benefit from ocean acidification, over the next century (at a pH of 7.7 on the total scale), on Posidonia physiology and growth may be minimal and difficult to detect without increased replication or longer experimental duration. The limited stimulation, which did not surpass any enclosure or seasonal effect, casts doubts on speculations that elevated CO2 would confer resistance to thermal stress and increase the buffering capacity of meadows.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pyrite formation within and directly below sapropels in the eastern Mediterranean was governed by the relative rates of sulphide production and Fe liberation and supply to the organic-rich layers. At times of relatively high [SO4]2- reduction, sulphide could diffuse downward from the sapropel and formed pyrite in underlying sediments. The sources of Fe for pyrite formation comprised detrital Fe and diagenetically liberated Fe(II) from sapropel-underlying sediments. In organic-rich sapropels, input of Fe from the water column via Fe sulphide formation in the water may have been important as well. Rapid pyrite formation at high saturation levels resulted in the formation of framboidal pyrite within the sapropels, whereas below the sapropels slow euhedral pyrite formation at low saturation levels occurred. d34S values of pyrite are -33 per mil to -50 per mil. Below the sapropels d34S is lower than within the sapropels, as a result of increased sulphide re-oxidation at times of relatively high sulphide production and concentration when sulphide could escape from the sediment. The percentage of initially formed sulphide that was re-oxidized was estimated from organic carbon fluxes and burial efficiencies in the sediment. It ranges from 34% to 80%, varying significantly between sapropels. Increased palaeoproductivity as well as enhanced preservation contributed to magnified accumulation of organic matter in sapropels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Late Pliocene changes in the advection of Mediterranean Outflow Water (MOW) derivates were reconstructed at northeast Atlantic DSDP/ODP sites 548 and 982 and compared to records of WMDW at West Mediterranean Site 978. Neodymium isotope (epsilon-Nd) values more positive than ~10.5/~ 11 reflect diluted MOW derivates that spread almost continuously into the northeast Atlantic from 3.7 to 2.55 Ma, reaching Rockall Plateau Site 982 from 3.63 to 2.75 Ma. From 3.4 to 3.3 Ma average MOW temperature and salinity increased by 2°-4 °C and ~1 psu both at proximal Site 548 and distal Site 982. The rise implies a rise in flow strength, coeval with a long-term rise in both west Mediterranean Sea surface salinity by almost 2 psu and average bottom water salinity (BWS) by ~1 psu, despite inherent uncertainties in BWS estimates. The changes were linked with major Mediterranean aridification and a drop in African monsoon humidity. In contrast to model expectations, the rise in MOW salt discharge after 3.4 Ma did not translate into improved ventilation of North Atlantic Deep Water, since it possibly was too small to significantly influence Atlantic Meridional Overturning Circulation. Right after ~2.95 Ma, with the onset of major Northern Hemisphere Glaciation, long-term average bottom water temperature (BWT) and BWS at Site 548 dropped abruptly by ~5 °C and ~1-2 psu, in contrast to more distal Site 982, where BWT and BWS continued to oscillate at estimates of ~2 °C and 1.5-2.5 psu higher than today until ~2.6 Ma. We relate the small-scale changes both to a reduced MOW flow and to enhanced dilution by warm waters of a strengthened North Atlantic Current temporarily replacing MOW derivates at Rockall Plateau.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Mediterranean Sea is a semi-enclosed sea, connected to the Atlantic Ocean through the Gibraltar Strait and subdivided in two different regions by the Sicily Strait. The geographical extension of the basin, the surface heat flux, and the water inflow from the Gibraltar Strait are some of the basic factors determining its horizontal and vertical circulation. In the Mediterranean strong salinity and temperature zonal gradients contribute to maintain the zonal-vertical circulation, while meridional-vertical cells are equally forced by winds and deep water mass formation in three regions, the Gulf of Lyon, the southern Adriatic and the Cretan Sea areas. The objective of this thesis is to study how these cells combine together to form the Mediterranean conveyor belt system. This has never been attempted before so the conclusions are necessarily preliminary. In the first part we discuss the vertical zonal and meridional circulation by reconstructing the Wust Mediterranean vertical salinity and temperature structures in an attempt to evaluate the water mass structure consistent with modern data. Our results confirm that Wust depicted vertical circulation from scarce data is reproduced by the past 27 years observations. The structure of both meridional and zonal circulations was discussed using velocity vertical streamfunctions with two different methods. The first one, eulerian, allowed us to observe vertical structures that were already reported in the literature. Recent studies in the Atlantic Ocean have shown that gyres and eddies have an important influence in the isopycnal vertical circulation. This is called the residual circulation which was computed in this study for the first time. A possible interpretation of horizontal connection between the meridional and zonal cells was discussed using horizontal streamfunction. In the last part of the thesis we have been developing an idealized numerical model to study the vertical circulation in the Mediterranean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A box model is presented to simulate changes in Mediterranean long-term average salinity and d18O over the past 20,000 years. Simulations are validated by comparison with observations. Sensitivity tests illustrate robustness with respect to the main assumptions and uncertainties. The results show that relative humidity over the Mediterranean remained relatively constant around 70%, apparently narrowly constrained to the lower end of the range observed globally over sea surfaces by the basin's land-locked character. Isotopic depletion in run off, relative to the present, is identified as the main potential cause of depletions in the Mediterranean d18O record. Also, slight increases in relative humidity (of the order of 5%) might have caused very pronounced isotopic depletions, such as that in sapropel S5 of the penultimate interglacial maximum. The model shows distinctly non proportional responses of d18O and salinity to environmental change, which argues against the use of isotope residuals in Mediterranean paleosalinity reconstructions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modern Aegean Sea is an important source of deep water for the eastern Mediterranean. Its contribution to deep water ventilation is known to fluctuate in response to climatic variation on a decadal timescale. This study uses marine micropalaeontological and stable isotope data to investigate longer-term variability during the late glacial and Holocene, in particular that associated with the deposition of the early Holocene dysoxic/anoxic sapropel S1. Concentrating on the onset of sapropel-forming conditions, we identify the start of 'seasonal' stratification and highlight a lag in d18O response of the planktonic foraminifer N. pachyderma to termination T1b as identified in the d18O record of G. ruber. By use of a simple model we determine that this offset cannot be a function of bioturbation effects. The lag is of the order of 1 kyr and suggests that isolation of intermediate/deep water preceded the start of sapropel formation by up to 1.5 kyr. Using this discovery, we propose an explanation for the major unresolved problem in sapropel studies, namely, the source of nutrient supply required for export productivity to reach levels needed for sustained sapropel deposition. We suggest that nutrients had been accumulating in a stagnant basin for 1-1.5 kyr and that these accumulated resources were utilized during the deposition of S1. In addition, we provide a first quantitative estimate of the diffusive (1/e) mixing timescale for the eastern Mediterranean in its "stratified" sapropel mode, which is of the order of 450 years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We provide new evidence on sea surface temperature (SST) variations and paleoceanographic/paleoenvironmental changes over the past 1500 years for the north Aegean Sea (NE Mediterranean). The reconstructions are based on multiproxy analyses, obtained from the high resolution (decadal to multi-decadal) marine record M2 retrieved from the Athos basin. Reconstructed SSTs show an increase from ca. 850 to 950 AD and from ca. 1100 to 1300 AD. A cooling phase of almost 1.5 °C is observed from ca. 1600 AD to 1700 AD. This seems to have been the starting point of a continuous SST warming trend until the end of the reconstructed period, interrupted by two prominent cooling events at 1832 ± 15 AD and 1995 ± 1 AD. Application of an adaptive Kernel smoothing suggests that the current warming in the reconstructed SSTs of the north Aegean might be unprecedented in the context of the past 1500 years. Internal variability in atmospheric/oceanic circulations systems as well as external forcing as solar radiation and volcanic activity could have affected temperature variations in the north Aegean Sea over the past 1500 years. The marked temperature drop of approximately ~2 °C at 1832 ± 15 yr AD could be related to the 1809 ?D 'unknown' and the 1815 AD Tambora volcanic eruptions. Paleoenvironmental proxy-indices of the M2 record show enhanced riverine/continental inputs in the northern Aegean after ca. 1450 AD. The paleoclimatic evidence derived from the M2 record is combined with a socio-environmental study of the history of the north Aegean region. We show that the cultivation of temperature-sensitive crops, i.e. walnut, vine and olive, co-occurred with stable and warmer temperatures, while its end coincided with a significant episode of cooler temperatures. Periods of agricultural growth in Macedonia coincide with periods of warmer and more stable SSTs, but further exploration is required in order to identify the causal links behind the observed phenomena. The Black Death likely caused major changes in agricultural activity in the north Aegean region, as reflected in the pollen data from land sites of Macedonia and the M2 proxy-reconstructions. Finally, we conclude that the early modern peaks in mountain vegetation in the Rhodope and Macedonia highlands, visible also in the M2 record, were very likely climate-driven.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean acidification is predicted to have significant effects on benthic calcifying invertebrates, in particular on their early developmental stages. Echinoderm larvae could be particularly vulnerable to decreased pH, with major consequences for adult populations. The objective of this study was to understand how ocean acidification would affect the initial life stages of the sea urchin Paracentrotus lividus, a common species that is widely distributed in the Mediterranean Sea and the NE Atlantic. The effects of decreased pH (elevated PCO2) were investigated through physiological and molecular analyses on both embryonic and larval stages. Eggs and larvae were reared in Mediterranean seawater at six pH levels, i.e. pHT 8.1, 7.9, 7.7, 7.5, 7.25 and 7.0. Fertilization success, survival, growth and calcification rates were monitored over a 3 day period. The expression of genes coding for key proteins involved in development and biomineralization was also monitored. Paracentrotus lividus appears to be extremely resistant to low pH, with no effect on fertilization success or larval survival. Larval growth was slowed when exposed to low pH but with no direct impact on relative larval morphology or calcification down to pHT 7.25. Consequently, at a given time, larvae exposed to low pH were present at a normal but delayed larval stage. More surprisingly, candidate genes involved in development and biomineralization were upregulated by factors of up to 26 at low pH. Our results revealed plasticity at the gene expression level that allows a normal, but delayed, development under low pH conditions.