974 resultados para Beta(2)-adrenergic Receptors
Resumo:
CD1d tetramers loaded with alpha-galactosylceramide (alpha-GalCer) bind selectively to mouse invariant Valpha14 (Valpha14i) NKT cells and their human counterparts. Whereas tetramer binding strictly depends on the expression of a Valpha14-Jalpha18 chain in murine NKT cells, the associated beta-chain (typically expressing Vbeta8.2 or Vbeta7) appears not to influence tetramer binding. In this study, we describe novel alpha-GalCer-loaded mouse and human CD1d-IgG1 dimers, which revealed an unexpected influence of the TCR-beta chain on the avidity of CD1d:alpha-GalCer binding. A subset of Valpha14i NKT cells clearly discriminated alpha-GalCer bound to mouse or human CD1d on the basis of avidity differences conferred by the Vbeta domain of the TCR-beta chain, with Vbeta8.2 conferring higher avidity binding than Vbeta7.
Resumo:
Neurotensin (NT) is secreted from neurons and gastrointestinal endocrine cells. We previously reported that the three NT receptors (NTSRs) are expressed in pancreatic islets and beta cell lines on which we observed a protective effect of NT against cytotoxic agents. In this study, we explored the role of NT on insulin secretion in the endocrine pancreatic beta cells. We observed that NT stimulates insulin secretion at low glucose level and has a small inhibiting effect on stimulated insulin secretion from isolated islets or INS-1E cells. We studied the mechanisms by which NT elicited calcium concentration changes using fura-2 loaded islets or INS-1E cells. NT increases calcium influx through the opening of cationic channels. Similar calcium influxes were observed after treatment with NTSR selective ligands. NT-evoked calcium regulation involves PKC and the translocation of PKCalpha and PKCepsilon to the plasma membrane. Part of NT effects appears to be also mediated by PKA but not via the Erk pathway. Taken together, these data provide evidence for an important endocrine role of NT in the regulation of the secretory function of beta cells.
Resumo:
The two incretins, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), are insulinotropic factors released from the small intestine to the blood stream in response to oral glucose ingestion. The insulinotropic effect of GLP-1 is maintained in patients with Type II (non-insulin-dependent) diabetes mellitus, whereas, for unknown reasons, the effect of GIP is diminished or lacking. We defined the exon-intron boundaries of the human GIP receptor, made a mutational analysis of the gene and identified two amino acid substitutions, A207 V and E354Q. In an association study of 227 Caucasian Type II diabetic patients and 224 matched glucose tolerant control subjects, the allelic frequency of the A207 V polymorphism was 1.1% in Type II diabetic patients and 0.7% in control subjects (p = 0.48), whereas the allelic frequency of the codon 354 polymorphism was 24.9% in Type II diabetic patients versus 23.2% in control subjects. Interestingly, the glucose tolerant subjects (6% of the population) who were homozygous for the codon 354 variant had on average a 14% decrease in fasting serum C-peptide concentration (p = 0.01) and an 11% decrease in the same variable 30 min after an oral glucose load (p = 0.03) compared with subjects with the wild-type receptor. Investigation of the function of the two GIP receptor variants in Chinese hamster fibroblasts showed, however, that the GIP-induced cAMP formation and the binding of GIP to cells expressing the variant receptors were not different from the findings in cells expressing the wildtype GIP receptor. In conclusion, amino acid variants in the GIP receptor are not associated with random Type II diabetes in patients of Danish Caucasian origin or with altered GIP binding and GIP-induced cAMP production when stably transfected in Chinese hamster fibroblasts. The finding of an association between homozygosity for the codon 354 variant and reduced fasting and post oral glucose tolerance test (OGTT) serum C-peptide concentrations, however, calls for further investigations and could suggest that GIP even in the fasting state regulates the beta-cell secretory response.
Resumo:
Site-directed mutagenesis and molecular dynamics analysis of the 3-D model of the alpha1B-adrenergic receptor (AR) were combined to identify the molecular determinants of the receptor involved in catecholamine binding. Our results indicate that the three conserved serines in the fifth transmembrane domain (TMD) of the alpha1B-AR play a distinct role in catecholamine binding versus receptor activation. In addition to the amino acids D125 in TMDIII and S207 in TMDV directly involved in ligand binding, our findings identify a large number of polar residues playing an important role in the activation process of the alpha1B-AR thus providing new insights into the structure/function relationship of G protein-coupled receptors.
Resumo:
Excessive proliferation of vascular wall cells underlies the development of elevated vascular resistance in hypoxic pulmonary hypertension (PH), but the responsible mechanisms remain unclear. Growth-promoting effects of catecholamines may contribute. Hypoxemia causes sympathoexcitation, and prolonged stimulation of alpha(1)-adrenoceptors (alpha(1)-ARs) induces hypertrophy and hyperplasia of arterial smooth muscle cells and adventitial fibroblasts. Catecholamine trophic actions in arteries are enhanced when other conditions favoring growth or remodeling are present, e.g., injury or altered shear stress, in isolated pulmonary arteries from rats with hypoxic PH. The present study examined the hypothesis that catecholamines contribute to pulmonary vascular remodeling in vivo in hypoxic PH. Mice genetically deficient in norepinephrine and epinephrine production [dopamine beta-hydroxylase(-/-) (DBH(-/-))] or alpha(1)-ARs were examined for alterations in PH, cardiac hypertrophy, and vascular remodeling after 21 days exposure to normobaric 0.1 inspired oxygen fraction (Fi(O(2))). A decrease in the lumen area and an increase in the wall thickness of arteries were strongly inhibited in knockout mice (order of extent of inhibition: DBH(-/-) = alpha(1D)-AR(-/-) > alpha(1B)-AR(-/-)). Distal muscularization of small arterioles was also reduced (DBH(-/-) > alpha(1D)-AR(-/-) > alpha(1B)-AR(-/-) mice). Despite these reductions, increases in right ventricular pressure and hypertrophy were not attenuated in DBH(-/-) and alpha(1B)-AR(-/-) mice. However, hematocrit increased more in these mice, possibly as a consequence of impaired cardiovascular activation that occurs during reduction of Fi(O(2)). In contrast, in alpha(1D)-AR(-/-) mice, where hematocrit increased the same as in wild-type mice, right ventricular pressure was reduced. These data suggest that catecholamine stimulation of alpha(1B)- and alpha(1D)-ARs contributes significantly to vascular remodeling in hypoxic PH.
Resumo:
This study proposes a theoretical model describing the electrostatically driven step of the alpha 1 b-adrenergic receptor (AR)-G protein recognition. The comparative analysis of the structural-dynamics features of functionally different receptor forms, i.e., the wild type (ground state) and its constitutively active mutants D142A and A293E, was instrumental to gain insight on the receptor-G protein electrostatic and steric complementarity. Rigid body docking simulations between the different forms of the alpha 1 b-AR and the heterotrimeric G alpha q, G alpha s, G alpha i1, and G alpha t suggest that the cytosolic crevice shared by the active receptor and including the second and the third intracellular loops as well as the cytosolic extension of helices 5 and 6, represents the receptor surface with docking complementarity with the G protein. On the other hand, the G protein solvent-exposed portions that recognize the intracellular loops of the activated receptors are the N-terminal portion of alpha 3, alpha G, the alpha G/alpha 4 loop, alpha 4, the alpha 4/beta 6 loop, alpha 5, and the C-terminus. Docking simulations suggest that the two constitutively active mutants D142A and A293E recognize different G proteins with similar selectivity orders, i.e., G alpha q approximately equal to G alpha s > G alpha i > G alpha t. The theoretical models herein proposed might provide useful suggestions for new experiments aiming at exploring the receptor-G protein interface.
Resumo:
BALB/c mice develop aberrant T helper 2 (Th2) responses and suffer progressive disease after infection with Leishmania major. These outcomes depend on the production of interleukin-4 (IL-4) early after infection. Here we demonstrate that the burst of IL-4 mRNA, peaking in draining lymph nodes of BALB/c mice 16 hr after infection, occurs within CD4+ T cells that express V beta 4 V alpha 8 T cell receptors. In contrast to control and V beta 6-deficient BALB/c mice, V beta 4-deficient BALB/c mice were resistant to infection, demonstrating the role of these cells in Th2 development. The early IL-4 response was absent in these mice, and T helper 1 responses occurred following infection. Recombinant LACK antigen from L. major induced comparable IL-4 production in V beta 4 V alpha 8 CD4+ cells. Thus, the IL-4 required for Th2 development and susceptibility to L. major is produced by a restricted population of V beta 4 V alpha 8 CD4+ T cells after cognate interaction with a single antigen from this complex organism.
Resumo:
GLP-1 protects β-cells against apoptosis by still incompletely understood mechanisms. In a recent study, we searched for novel anti-apoptotic pathways by performing comparative transcriptomic analysis of islets from Gipr-/-;Glp-1r-/- mice, which show increased susceptibility to cytokine-induced apoptosis. We observed a strong reduction in IGF-1R expression in the knockout islets suggesting a link between the gluco-incretin and IGF-1R signaling pathways. Using MIN6 and primary islet cells, we demonstrated that GLP-1 strongly stimulates IGF-1R expression and that activation of the IGF-1R/Akt signaling pathway required active secretion of IGF-2 by the β-cells. We showed that inactivation of the IGF-1 receptor gene in β-cells or preventing its up-regulation by GLP-1, as well as suppressing IGF-2 expression or action, blocked the protective effect of GLP-1 against cytokine-induced apoptosis. Thus, an IGF-2/IGF-1 receptor autocrine loop operates in β-cells and GLP-1 increases its activity by enhancing IGF-1R expression and by stimulating IGF-2 secretion. This mechanism is required for GLP-1 to protect β-cells against apoptosis.
Resumo:
In this chapter we summarize some aspects of the structure-functional relationship of the alpha 1a and alpha 1b-adrenergic receptor subtypes related to the receptor activation process as well as the effect of different alpha-blockers on the constitutive activity of the receptor. Molecular modeling of the alpha 1a and alpha 1b-adrenergic receptor subtypes and computational simulation of receptor dynamics were useful to interpret the experimental findings derived from site directed mutagenesis studies.
Resumo:
Toll-like receptors (TLRs) recognise pathogen-derived molecules and influence immunity to control parasite infections. This study aimed to evaluate the mRNA expression of TLRs 2 and 4, the expression and production of the cytokines interleukin (IL)-12, interferon (IFN)-γ, tumor necrosis factor (TNF)-α, IL-17, IL-10 and transforming growth factor (TGF)-β and the production of nitric oxide (NO) in the spleen of mice infected with Leishmania chagasi. It also aimed to evaluate any correlations between mRNA expression TLR2 and 4 and cytokines and NO production. Infection resulted in increased TLR2-4, IL-17, TNF-α and TGF-β mRNA expression during early infection, with decreased expression during late infection correlating with parasite load. IFN-γ and IL-12 mRNA expression decreased at the peak of parasitism. IL-10 mRNA expression increased throughout the entire time period analysed. Although TGF-β, TNF-α and IL-17 were highly produced during the initial phase of infection, IFN-γ and IL-12 exhibited high production during the final phase of infection. IL-10 and NO showed increased production throughout the evaluated time period. In the acute phase of infection, there was a positive correlation between TLR2-4, TNF-α, IL-17, NO, IL-10 and TGF-β expression and parasite load. During the chronic phase of infection, there was a positive correlation between TLR2-4, TNF-α, IL-17 and TGF-β expression and parasite load. Our data suggest that infection by L. chagasi resulted in modulation of TLRs 2 and 4 and cytokines.
Resumo:
The effect of exendin-(9-39), a described antagonist of the glucagon-like peptide-1 (GLP-1) receptor, was evaluated on the formation of cAMP- and glucose-stimulated insulin secretion (GSIS) by the conditionally immortalized murine betaTC-Tet cells. These cells have a basal intracellular cAMP level that can be increased by GLP-1 with an EC50 of approximately 1 nM and can be decreased dose dependently by exendin-(9-39). This latter effect was receptor dependent, as a beta-cell line not expressing the GLP-1 receptor was not affected by exendin-(9-39). It was also not due to the endogenous production of GLP-1, because this effect was observed in the absence of detectable preproglucagon messenger RNA levels and radioimmunoassayable GLP-1. Importantly, GSIS was shown to be sensitive to this basal level of cAMP, as perifusion of betaTC-Tet cells in the presence of exendin-(9-39) strongly reduced insulin secretion. This reduction of GSIS, however, was observed only with growth-arrested, not proliferating, betaTC-Tet cells; it was also seen with nontransformed mouse beta-cells perifused in similar conditions. These data therefore demonstrated that 1) exendin-(9-39) is an inverse agonist of the murine GLP-1 receptor; 2) the decreased basal cAMP levels induced by this peptide inhibit the secretory response of betaTC-Tet cells and mouse pancreatic islets to glucose; 3) as this effect was observed only with growth-arrested cells, this indicates that the mechanism by which cAMP leads to potentiation of insulin secretion is different in proliferating and growth-arrested cells; and 4) the presence of the GLP-1 receptor, even in the absence of bound peptide, is important for maintaining elevated intracellular cAMP levels and, therefore, the glucose competence of the beta-cells.
Resumo:
Summary The Wnt signaling pathway plays an important role during development and also for maintaining tissue homeostasis due to its function in proliferation, differentiation and cell fate decisions. Wnt ligands bind to Frizzled receptors and activate a signaling cascade that results in the stabilization of β-Catenin, a key component of the pathway. β-Catenin translocates to the nucleus, where, together with a transcription factor of the Tcf/Lef family, it activates the expression of target genes. Legless and Pygopus are two recently discovered essential components of the Wnt pathway in Drosophila, which may mediate the nuclear import and retention of beta-Catenin and/or contribute directly to the activation of Wnt target genes. To address the function of Legless in the mouse, we have generated compound constitutive and conditional knockout alleles of the two homologues legless 'I (bc1-9) and 2. We have induced the deletion of legless in self-renewing tissues such as the gastrointestinal tract, the mammary gland and the skin during adulthood and constitutively in the embryo. The present thesis focused on the consequences of the inactivation of legless in epithelial homeostasis as well as in a regeneration model and its comparison to pygopus. Deletion of neither legless nor pygopus in the adult small intestine resulted in any apparent anomaly, contrasting expectations from the phenotype caused by over-expression of Dickkopf, a Wnt inhibitor (Pinto et al., 2003). These observations indicate that canonical Wnt signaling might not be indispensable for normal gastrointestinal epithelium homeostasis, or that, in this context, Legless and Pygopus are not essential components of the Wnt pathway. However, the regeneration of the colonic epithelium after DSS induced damage was markedly impaired in legless, but not in pygopus deficient mice. Thus, unlike in Drosophila, deletion of mammalian legless and pygopus resulted in different phenotypes, suggesting that Legless might interact with as yet unidentified partners in addition to Pygopus. Resumé La voie de signalisation Wnt joue un rôle important au cours du développement ainsi que pour le maintien de l' homéostase tissulaire due à sa fonction durant la prolifération, la différentiation et les décisions sur l'avenir des cellules. Les ligands de Wnt se lient aux récepteurs Frizzled et activent une cascade de signalisation résultant en la stabilisation de β-Catenin, un composant central de cette voie. β-Catenin est transloquée dans le noyau ou, avec l'aide des facteurs de transcription de la famille Tcf/lef, elle active la transcription des gènes cibles. Legless et Pygopus sont deux composants récemment découverts et essentiels de la voie de signalisation Wnt chez la Drosophile qui pourraient être des médiateurs de l'import et de la rétention nucléaire de bêta-catenin et/ou contribuer directement a l'activation des gènes cibles. Afin de comprendre la fonction de Legless chez la souris, nous avons généré simultanément les allèles « knock-out » constitutifs et conditionnels des deux homologues legless 1 (bc1-9) et 2. Nous avons induit la délétion de legless dans des tissus capables de s'auto renouveler comme le tract gastro-intestinal, la glande mammaire et la peau chez l'adulte et nous avons supprimé constitutivement legless chez l'embryon. La présente thèse est concentrée sur les conséquences de l'inactivation de legless au cours de l' homéostase épithéliale ainsi que dans un modèle de régénération et sur sa comparaison avec pygopus. Ni la délétion de legless ni celle de pygopus dans l'intestin adulte n'ont résulté en quelque anomalie, contrastant nos attentes provenant des phénotypes causes par la surexpression de Dickkpof, un inhibiteur de Wnt (Pinto et al., 2003). Ces observations indiquent que la voie de signalisation Wnt/β-Catenin pourrait ne pas être indispensable à l' homéostase normale du tract gastro-intestinal, ou que, dans ce contexte, Legless et Pygopus ne sont pas des composants essentiels de la vole Wnt. Cependant, la régénération de l'épithélium du colon après induction de son endommagement au DSS fut dramatiquement diminuée chez legless mais pas chez les souris mutantes pour pygopus. Ainsi, a la différence de chez la Drosophile, la délétion de legless et pygopus chez les mammifères a résulté en des phénotypes différents, suggérant que Legless pourrait interagir avec d'autres partenaires, encore non identifies, que Pygopus.
Resumo:
BACKGROUND & AIMS: The peroxisome proliferator-activated nuclear receptors (PPAR-alpha, PPAR-beta, and PPAR-gamma), which modulate the expression of genes involved in energy homeostasis, cell cycle, and immune function, may play a role in hepatic stellate cell activation. Previous studies focused on the decreased expression of PPAR-gamma in hepatic stellate cell activation but did not investigate the expression and role of the PPAR-alpha and -beta isotypes. The aim of this study was to evaluate the expression of the different PPARs during hepatic stellate cell activation in vitro and in situ and to analyze possible factors that might contribute to their expression. In a second part of the study, the effect of a PPAR-beta agonist on acute liver injury was evaluated. METHODS: The effects of PPAR isotype-specific ligands on hepatic stellate cell transition were evaluated by bromodeoxyuridine incorporation, gel shifts, immunoprecipitation, and use of antisense PPAR-beta RNA-expressing adenoviruses. Tumor necrosis factor alpha-induced PPAR-beta phosphorylation and expression was evaluated by metabolic labeling and by using specific P38 inhibitors. RESULTS: Hepatic stellate cells constitutively express high levels of PPAR-beta, which become further induced during culture activation and in vivo fibrogenesis. No significant expression of PPAR-alpha or -gamma was found. Stimulation of the P38 mitogen-activated protein kinase pathway modulated the expression of PPAR-beta. Transcriptional activation of PPAR-beta by L165041 enhanced hepatic stellate cell proliferation. Treatment of rats with a single bolus of CCl(4) in combination with L165041 further enhanced the expression of fibrotic markers. CONCLUSIONS: PPAR-beta is an important signal-transducing factor contributing to hepatic stellate cell proliferation during acute and chronic liver inflammation.
Resumo:
Leprosy is an infectious and contagious spectral disease accompanied by a series of immunological events triggered by the host response to the aetiologic agent, Mycobacterium leprae . The induction and maintenance of the immune/inflammatory response in leprosy are linked to multiple cell interactions and soluble factors, primarily through the action of cytokines. The purpose of the present study was to evaluate the serum levels of tumour necrosis factor (TNF)-α and its soluble receptors (sTNF-R1 and sTNF-R2) in leprosy patients at different stages of multidrug treatment (MDT) in comparison with non-infected individuals and to determine their role as putative biomarkers of the severity of leprosy or the treatment response. ELISA was used to measure the levels of these molecules in 30 healthy controls and 37 leprosy patients at the time of diagnosis and during and after MDT. Our results showed increases in the serum levels of TNF-α and sTNF-R2 in infected individuals in comparison with controls. The levels of TNF-α, but not sTNF-R2, decreased with treatment. The current results corroborate previous reports of elevated serum levels of TNF-α in leprosy and suggest a role for sTNF-R2 in the control of this cytokine during MDT.
Resumo:
T cell factor-1 (Tcf-1) is a transcription factor that binds to a sequence motif present in several T cell-specific enhancer elements. In Tcf-1-deficient (Tcf-1-/-) mice, thymocyte development is partially blocked at the transition from the CD4-8+ immature single-positive stage to the CD4+8+ double-positive stage, resulting in a marked decrease of mature peripheral T cells in lymph node and spleen. We report here that the development of most intestinal TCR gamma delta+ cells and liver CD4+ NK1.1+TCR alpha beta+ (NK1+T) cells, which are believed to be of extrathymic origin, is selectively impaired in Tcf-1-/- mice. In contrast, thymic and thymus-derived (splenic) TCR gamma delta+ cells are present in normal numbers in Tcf-1-/- mice, as are other T cell subsets in intestine and liver. Collectively, our data suggest that Tcf-1 is differentially required for the development of some extrathymic T cell subsets, including intestinal TCR gamma delta+ cells and liver CD4+ NK1+T cells.