874 resultados para Benchmark of Energy consumption
Resumo:
With the growth of energy consumption worldwide, conventional reservoirs, the reservoirs called "easy exploration and production" are not meeting the global energy demand. This has led many researchers to develop projects that will address these needs, companies in the oil sector has invested in techniques that helping in locating and drilling wells. One of the techniques employed in oil exploration process is the reverse time migration (RTM), in English, Reverse Time Migration, which is a method of seismic imaging that produces excellent image of the subsurface. It is algorithm based in calculation on the wave equation. RTM is considered one of the most advanced seismic imaging techniques. The economic value of the oil reserves that require RTM to be localized is very high, this means that the development of these algorithms becomes a competitive differentiator for companies seismic processing. But, it requires great computational power, that it still somehow harms its practical success. The objective of this work is to explore the implementation of this algorithm in unconventional architectures, specifically GPUs using the CUDA by making an analysis of the difficulties in developing the same, as well as the performance of the algorithm in the sequential and parallel version
Resumo:
Today, modern System-on-a-Chip (SoC) systems have grown rapidly due to the increased processing power, while maintaining the size of the hardware circuit. The number of transistors on a chip continues to increase, but current SoC designs may not be able to exploit the potential performance, especially with energy consumption and chip area becoming two major concerns. Traditional SoC designs usually separate software and hardware. Thus, the process of improving the system performance is a complicated task for both software and hardware designers. The aim of this research is to develop hardware acceleration workflow for software applications. Thus, system performance can be improved with constraints of energy consumption and on-chip resource costs. The characteristics of software applications can be identified by using profiling tools. Hardware acceleration can have significant performance improvement for highly mathematical calculations or repeated functions. The performance of SoC systems can then be improved, if the hardware acceleration method is used to accelerate the element that incurs performance overheads. The concepts mentioned in this study can be easily applied to a variety of sophisticated software applications. The contributions of SoC-based hardware acceleration in the hardware-software co-design platform include the following: (1) Software profiling methods are applied to H.264 Coder-Decoder (CODEC) core. The hotspot function of aimed application is identified by using critical attributes such as cycles per loop, loop rounds, etc. (2) Hardware acceleration method based on Field-Programmable Gate Array (FPGA) is used to resolve system bottlenecks and improve system performance. The identified hotspot function is then converted to a hardware accelerator and mapped onto the hardware platform. Two types of hardware acceleration methods – central bus design and co-processor design, are implemented for comparison in the proposed architecture. (3) System specifications, such as performance, energy consumption, and resource costs, are measured and analyzed. The trade-off of these three factors is compared and balanced. Different hardware accelerators are implemented and evaluated based on system requirements. 4) The system verification platform is designed based on Integrated Circuit (IC) workflow. Hardware optimization techniques are used for higher performance and less resource costs. Experimental results show that the proposed hardware acceleration workflow for software applications is an efficient technique. The system can reach 2.8X performance improvements and save 31.84% energy consumption by applying the Bus-IP design. The Co-processor design can have 7.9X performance and save 75.85% energy consumption.
Resumo:
Economic development goes hand in hand with an increase in the consumption of natural resources. Some analysts use material flows to describe such relationship [Eurostat 2001, Weisz et al., 2006], or exergy [Ayres et al., 2003]. Instead this paper will use a characterisation of the exosomatic energy metabolism based on expected benchmark values to describe possible constraints to economic development posed by available human time and energy. The aim of the paper is to identify types of exosomatic energy metabolism of different societies to interpret its consequences for economic development. This is done with the application of the accounting methodology called Multi-Scale Integrated Analysis of Societal Metabolism (MSIASM) to the particular case of energy metabolism for the analysis of the economies of Brazil, Chile and Venezuela.
Resumo:
Laser additive manufacturing (LAM), known also as 3D printing, is a powder bed fusion (PBF) type of additive manufacturing (AM) technology used to manufacture metal parts layer by layer by assist of laser beam. The development of the technology from building just prototype parts to functional parts is due to design flexibility. And also possibility to manufacture tailored and optimised components in terms of performance and strength to weight ratio of final parts. The study of energy and raw material consumption in LAM is essential as it might facilitate the adoption and usage of the technique in manufacturing industries. The objective this thesis was find the impact of LAM on environmental and economic aspects and to conduct life cycle inventory of CNC machining and LAM in terms of energy and raw material consumption at production phases. Literature overview in this thesis include sustainability issues in manufacturing industries with focus on environmental and economic aspects. Also life cycle assessment and its applicability in manufacturing industry were studied. UPLCI-CO2PE! Initiative was identified as mostly applied exiting methodology to conduct LCI analysis in discrete manufacturing process like LAM. Many of the reviewed literature had focused to PBF of polymeric material and only few had considered metallic materials. The studies that had included metallic materials had only measured input and output energy or materials of the process and compared to different AM systems without comparing to any competitive process. Neither did any include effect of process variation when building metallic parts with LAM. Experimental testing were carried out to make dissimilar samples with CNC machining and LAM in this thesis. Test samples were designed to include part complexity and weight reductions. PUMA 2500Y lathe machine was used in the CNC machining whereas a modified research machine representing EOSINT M-series was used for the LAM. The raw material used for making the test pieces were stainless steel 316L bar (CNC machined parts) and stainless steel 316L powder (LAM built parts). An analysis of power, time, and the energy consumed in each of the manufacturing processes on production phase showed that LAM utilises more energy than CNC machining. The high energy consumption was as result of duration of production. Energy consumption profiles in CNC machining showed fluctuations with high and low power ranges. LAM energy usage within specific mode (standby, heating, process, sawing) remained relatively constant through the production. CNC machining was limited in terms of manufacturing freedom as it was not possible to manufacture all the designed sample by machining. And the one which was possible was aided with large amount of material removed as waste. Planning phase in LAM was shorter than in CNC machining as the latter required many preparation steps. Specific energy consumption (SEC) were estimated in LAM based on the practical results and assumed platform utilisation. The estimated platform utilisation showed SEC could reduce when more parts were placed in one build than it was in with the empirical results in this thesis (six parts).
Resumo:
Botswana has a basic need to explore its energy concept, this being its energy sources, generation and percentage of the population with access to electricity. At present, Botswana generates electricity from coal, which supplies about 29% (on average) of the country’s demand. The other 71% is imported mainly from South Africa (Eskom). Consequently, the dependence of Botswana on imports posses threats to the security of its energy supply. As a result, there is the need to understand the bases for a possible generation expansion that would substantiate existing documentation. In view of this need, this study investigates the existing energy sources as well as energy consumption and production levels in Botswana. The study would be further developed by making projections of the energy demand up until the year 2020. The key techniques that were used include; literature review, questionnaire survey and an empirical study. The results presented indicated that, current dependable operation capacity (i.e. 100MW) should be increased to 2,595 MW or more assuming 85% plant efficiency. This would then be able to meet the growing demand for energy use. In addition, the installed capacity would be able to support commercial and mining activities for the growth of the economy.
Resumo:
The issue in this matter is that rules for use of electricity in rural areas are limited to the provision of inputs. Adopting guidelines to consider managed sub regions can generate poor results. The focus of this study was to present parameters for indicators of electric energy and agricultural production to allow the formation of city groups in Sao Paulo State, Brazil, with similar electric energy consumption and rural agricultural production. The methodology was the development of indicators that characterize the electric energy consumption/agricultural production and the preparation of groups using indicators with ward of statistical method of groups. The main conclusions were the formation of six homogeneous groups with similar characteristics regarding agricultural production/consumption of electricity. The application of these groups in cities with similar characteristics would produce more satisfactory results than the division of administrative Rural Development Offices (RDO).
Resumo:
This paper presents the results of the implementation of a self-consumption maximization strategy tested in a real-scale Vanadium Redox Flow Battery (VRFB) (5 kW, 60 kWh) and Building Integrated Photovoltaics (BIPV) demonstrator (6.74 kWp). The tested energy management strategy aims to maximize the consumption of energy generated by a BIPV system through the usage of a battery. Whenever possible, the residual load is either stored in the battery to be used later or is supplied by the energy stored previously. The strategy was tested over seven days in a real-scale VRF battery to assess the validity of this battery to implement BIPV-focused energy management strategies. The results show that it was possible to obtain a self-consumption ratio of 100.0%, and that 75.6% of the energy consumed was provided by PV power. The VRFB was able to perform the strategy, although it was noticed that the available power (either to charge or discharge) varied with the state of charge.
Resumo:
Objective To study the role of energy derived from sugar (both table sugar and sugar added to processed foods) in the total energy content of food purchases in Brazil.Design Food purchase data were collected during a national household budget survey carried out between June 2002 and July 2003 on a probabilistic sample representative of all households in the country. The amount of food purchased in this 12-month period was transformed into energy and energy from sugar using food composition tables. Multiple linear regression models were used to study the association between amount of energy from sugar and total energy content of food purchases, controlling for sociodemographic variables and potential interactions between these variables and sugar purchases.Results There was a positive and significant association between energy from sugar and total household energy purchases. A 1 kJ increase in sugar purchase corresponded to a 3·637 kJ increase in total energy. In the absence of expenditure on meals outside the home, i.e. when household food purchases tend to approximate actual food consumption by household members, sugar purchase of 1926·35 kJ/d (the 90th percentile of the distribution of sugar purchases in Brazil) was associated, depending on income strata, with total energy purchase over 40\201360 per cent of the recommended daily value for energy intake in Brazil.Conclusions The present results corroborate the recommendations of the WHO and the Brazilian Ministry of Health regarding limiting the consumption of sugar
Resumo:
This study aimed to develop a practical method of estimating energy expenditure (EE) during tennis. Twenty-four elite female tennis players first completed a tennis-specific graded test in which five different intensity levels were applied randomly. Each intensity level was intended to simulate a game of singles tennis and comprised six 14 s periods of activity alternated with 20 s of active rest. Oxygen consumption (VO2) and heart rate (HR) were measured continuously and each player's rate of perceived exertion (RPE) was recorded at the end of each intensity level. Rate of energy expenditure (EEVO2) during the test was calculated using the sum of VO2 during play and the 'O-2 debt' during recovery, divided by the duration of the activity. There were significant individual linear relationships between EEVO2 and RPE, EEVO2 and HR, (rgreater than or equal to0.89 rgreater than or equal to0.93; p
Resumo:
This paper presents the system developed to promote the rational use of electric energy among consumers and, thus, increase the energy efficiency. The goal is to provide energy consumers with an application that displays the energy consumption/production profiles, sets up consuming ceilings, defines automatic alerts and alarms, compares anonymously consumers with identical energy usage profiles by region and predicts, in the case of non-residential installations, the expected consumption/production values. The resulting distributed system is organized in two main blocks: front-end and back-end. The front-end includes user interface applications for Android mobile devices and Web browsers. The back-end provides data storage and processing functionalities and is installed in a cloud computing platform - the Google App Engine - which provides a standard Web service interface. This option ensures interoperability, scalability and robustness to the system.
Resumo:
Demand response concept has been gaining increasing importance while the success of several recent implementations makes this resource benefits unquestionable. This happens in a power systems operation environment that also considers an intensive use of distributed generation. However, more adequate approaches and models are needed in order to address the small size consumers and producers aggregation, while taking into account these resources goals. The present paper focuses on the demand response programs and distributed generation resources management by a Virtual Power Player that optimally aims to minimize its operation costs taking the consumption shifting constraints into account. The impact of the consumption shifting in the distributed generation resources schedule is also considered. The methodology is applied to three scenarios based on 218 consumers and 4 types of distributed generation, in a time frame of 96 periods.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia do Ambiente, Perfil de Gestão e Sistemas Ambientais
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA – School of Business and Economics
Resumo:
This project the direct rebound effect for the electricity demand in Portugal. While we find evidence of such an effect, the estimations also reflect the institutional arrangement that has characterized the electricity market in the country. Also, issues related to energy efficiency promotion are addressed in general putting into context the case study developed.
Resumo:
Since the last decade of the twentieth century, the healthcare industry is paying attention to the environmental impact of their buildings and therefore new regulations, policy goals and Buildings Sustainability Assessment (HBSA) methods are being developed and implemented. At the present, healthcare is one of the most regulated industries and it is also one of the largest consumers of energy per net floor area. To assess the sustainability of healthcare buildings it is necessary to establish a set of benchmarks related with their life-cycle performance. They are both essential to rate the sustainability of a project and to support designers and other stakeholders in the process of designing and operating a sustainable building, by allowing the comparison to be made between a project and the conventional and best market practices. This research is focused on the methodology to set the benchmarks for resources consumption, waste production, operation costs and potential environmental impacts related to the operational phase of healthcare buildings. It aims at contributing to the reduction of the subjectivity found in the definition of the benchmarks used in Building Sustainability Assessment (BSA) methods, and it is applied in the Portuguese context. These benchmarks will be used in the development of a Portuguese HBSA method.