937 resultados para Bayesian smoothing


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: There are several studies in the literature depicting measurement error in gene expression data and also, several others about regulatory network models. However, only a little fraction describes a combination of measurement error in mathematical regulatory networks and shows how to identify these networks under different rates of noise. Results: This article investigates the effects of measurement error on the estimation of the parameters in regulatory networks. Simulation studies indicate that, in both time series (dependent) and non-time series (independent) data, the measurement error strongly affects the estimated parameters of the regulatory network models, biasing them as predicted by the theory. Moreover, when testing the parameters of the regulatory network models, p-values computed by ignoring the measurement error are not reliable, since the rate of false positives are not controlled under the null hypothesis. In order to overcome these problems, we present an improved version of the Ordinary Least Square estimator in independent (regression models) and dependent (autoregressive models) data when the variables are subject to noises. Moreover, measurement error estimation procedures for microarrays are also described. Simulation results also show that both corrected methods perform better than the standard ones (i.e., ignoring measurement error). The proposed methodologies are illustrated using microarray data from lung cancer patients and mouse liver time series data. Conclusions: Measurement error dangerously affects the identification of regulatory network models, thus, they must be reduced or taken into account in order to avoid erroneous conclusions. This could be one of the reasons for high biological false positive rates identified in actual regulatory network models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Morphological and molecular analyses have proven to be complementary tools of taxonomic information for the redescription of the ctenostome bryozoans Amathia brasiliensis Busk, 1886 and Amathia distans Busk, 1886. The two species, originally described from material collected by the `Challenger` expedition but synonymized by later authors, now have their status fixed by means of the selection of lectotypes, morphological observations and analyses of DNA sequences described here. The morphological characters allowing the identification of living and/or preserved specimens are (1) A. brasiliensis: whitish-pale pigment spots in the frontal surface of stolons and zooids, and a wide stolon with biserial zooid clusters growing in clockwise and anti-clockwise spirals along it, the spirality direction being maintained from maternal to daughter stolons; and (2) A. distans: bright yellow pigment spots in stolonal and zooidal surfaces including lophophores, and a slender stolon, thickly cuticularized, with biserial zooid clusters growing in clockwise and anti-clockwise spirals along it and the spirality direction not maintained from maternal to daughter stolons. Pairwise comparisons of DNA sequences of the mitochondrial genes cytochrome c oxidase subunit I and large ribosomal RNA subunit revealed deep genetic divergence between A. brasiliensis and A. distans. Finally, analyses of those sequences within a Bayesian phylogenetic context recovered their genealogical species status.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stream discharge-concentration relationships are indicators of terrestrial ecosystem function. Throughout the Amazon and Cerrado regions of Brazil rapid changes in land use and land cover may be altering these hydrochemical relationships. The current analysis focuses on factors controlling the discharge-calcium (Ca) concentration relationship since previous research in these regions has demonstrated both positive and negative slopes in linear log(10)discharge-log(10)Ca concentration regressions. The objective of the current study was to evaluate factors controlling stream discharge-Ca concentration relationships including year, season, stream order, vegetation cover, land use, and soil classification. It was hypothesized that land use and soil class are the most critical attributes controlling discharge-Ca concentration relationships. A multilevel, linear regression approach was utilized with data from 28 streams throughout Brazil. These streams come from three distinct regions and varied broadly in watershed size (< 1 to > 10(6) ha) and discharge (10(-5.7)-10(3.2) m(3) s(-1)). Linear regressions of log(10)Ca versus log(10)discharge in 13 streams have a preponderance of negative slopes with only two streams having significant positive slopes. An ANOVA decomposition suggests the effect of discharge on Ca concentration is large but variable. Vegetation cover, which incorporates aspects of land use, explains the largest proportion of the variance in the effect of discharge on Ca followed by season and year. In contrast, stream order, land use, and soil class explain most of the variation in stream Ca concentration. In the current data set, soil class, which is related to lithology, has an important effect on Ca concentration but land use, likely through its effect on runoff concentration and hydrology, has a greater effect on discharge-concentration relationships.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simultaneous optimization strategy based on a neuro-genetic approach is proposed for selection of laser induced breakdown spectroscopy operational conditions for the simultaneous determination of macronutrients (Ca, Mg and P), micro-nutrients (B, Cu, Fe, Mn and Zn), Al and Si in plant samples. A laser induced breakdown spectroscopy system equipped with a 10 Hz Q-switched Nd:YAG laser (12 ns, 532 nm, 140 mJ) and an Echelle spectrometer with intensified coupled-charge device was used. Integration time gate, delay time, amplification gain and number of pulses were optimized. Pellets of spinach leaves (NIST 1570a) were employed as laboratory samples. In order to find a model that could correlate laser induced breakdown spectroscopy operational conditions with compromised high peak areas of all elements simultaneously, a Bayesian Regularized Artificial Neural Network approach was employed. Subsequently, a genetic algorithm was applied to find optimal conditions for the neural network model, in an approach called neuro-genetic, A single laser induced breakdown spectroscopy working condition that maximizes peak areas of all elements simultaneously, was obtained with the following optimized parameters: 9.0 mu s integration time gate, 1.1 mu s delay time, 225 (a.u.) amplification gain and 30 accumulated laser pulses. The proposed approach is a useful and a suitable tool for the optimization process of such a complex analytical problem. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Today several different unsupervised classification algorithms are commonly used to cluster similar patterns in a data set based only on its statistical properties. Specially in image data applications, self-organizing methods for unsupervised classification have been successfully applied for clustering pixels or group of pixels in order to perform segmentation tasks. The first important contribution of this paper refers to the development of a self-organizing method for data classification, named Enhanced Independent Component Analysis Mixture Model (EICAMM), which was built by proposing some modifications in the Independent Component Analysis Mixture Model (ICAMM). Such improvements were proposed by considering some of the model limitations as well as by analyzing how it should be improved in order to become more efficient. Moreover, a pre-processing methodology was also proposed, which is based on combining the Sparse Code Shrinkage (SCS) for image denoising and the Sobel edge detector. In the experiments of this work, the EICAMM and other self-organizing models were applied for segmenting images in their original and pre-processed versions. A comparative analysis showed satisfactory and competitive image segmentation results obtained by the proposals presented herein. (C) 2008 Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper analyses the presence of financial constraint in the investment decisions of 367 Brazilian firms from 1997 to 2004, using a Bayesian econometric model with group-varying parameters. The motivation for this paper is the use of clustering techniques to group firms in a totally endogenous form. In order to classify the firms we used a hybrid clustering method, that is, hierarchical and non-hierarchical clustering techniques jointly. To estimate the parameters a Bayesian approach was considered. Prior distributions were assumed for the parameters, classifying the model in random or fixed effects. Ordinate predictive density criterion was used to select the model providing a better prediction. We tested thirty models and the better prediction considers the presence of 2 groups in the sample, assuming the fixed effect model with a Student t distribution with 20 degrees of freedom for the error. The results indicate robustness in the identification of financial constraint when the firms are classified by the clustering techniques. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the most important recent improvements in cardiology is the use of ventricular assist devices (VADs) to help patients with severe heart diseases, especially when they are indicated to heart transplantation. The Institute Dante Pazzanese of Cardiology has been developing an implantable centrifugal blood pump that will be able to help a sick human heart to keep blood flow and pressure at physiological levels. This device will be used as a totally or partially implantable VAD. Therefore, an improvement on device performance is important for the betterment of the level of interaction with patient`s behavior or conditions. But some failures may occur if the device`s pumping control does not follow the changes in patient`s behavior or conditions. The VAD control system must consider tolerance to faults and have a dynamic adaptation according to patient`s cardiovascular system changes, and also must attend to changes in patient conditions, behavior, or comportments. This work proposes an application of the mechatronic approach to this class of devices based on advanced techniques for control, instrumentation, and automation to define a method for developing a hierarchical supervisory control system that is able to perform VAD control dynamically, automatically, and securely. For this methodology, we used concepts based on Bayesian network for patients` diagnoses, Petri nets to generate a VAD control algorithm, and Safety Instrumented Systems to ensure VAD system security. Applying these concepts, a VAD control system is being built for method effectiveness confirmation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Safety Instrumented Systems (SIS) are designed to prevent and / or mitigate accidents, avoiding undesirable high potential risk scenarios, assuring protection of people`s health, protecting the environment and saving costs of industrial equipment. The design of these systems require formal methods for ensuring the safety requirements, but according material published in this area, has not identified a consolidated procedure to match the task. This sense, this article introduces a formal method for diagnosis and treatment of critical faults based on Bayesian network (BN) and Petri net (PN). This approach considers diagnosis and treatment for each safety instrumented function (SIF) including hazard and operability (HAZOP) study in the equipment or system under control. It also uses BN and Behavioral Petri net (BPN) for diagnoses and decision-making and the PN for the synthesis, modeling and control to be implemented by Safety Programmable Logic Controller (PLC). An application example considering the diagnosis and treatment of critical faults is presented and illustrates the methodology proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examine the representation of judgements of stochastic independence in probabilistic logics. We focus on a relational logic where (i) judgements of stochastic independence are encoded by directed acyclic graphs, and (ii) probabilistic assessments are flexible in the sense that they are not required to specify a single probability measure. We discuss issues of knowledge representation and inference that arise from our particular combination of graphs, stochastic independence, logical formulas and probabilistic assessments. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper investigates probabilistic logics endowed with independence relations. We review propositional probabilistic languages without and with independence. We then consider graph-theoretic representations for propositional probabilistic logic with independence; complexity is analyzed, algorithms are derived, and examples are discussed. Finally, we examine a restricted first-order probabilistic logic that generalizes relational Bayesian networks. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a family of algorithms for approximate inference in credal networks (that is, models based on directed acyclic graphs and set-valued probabilities) that contain only binary variables. Such networks can represent incomplete or vague beliefs, lack of data, and disagreements among experts; they can also encode models based on belief functions and possibilistic measures. All algorithms for approximate inference in this paper rely on exact inferences in credal networks based on polytrees with binary variables, as these inferences have polynomial complexity. We are inspired by approximate algorithms for Bayesian networks; thus the Loopy 2U algorithm resembles Loopy Belief Propagation, while the Iterated Partial Evaluation and Structured Variational 2U algorithms are, respectively, based on Localized Partial Evaluation and variational techniques. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a supervisor system, able to diagnose different types of faults during the operation of a proton exchange membrane fuel cell is introduced. The diagnosis is developed by applying Bayesian networks, which qualify and quantify the cause-effect relationship among the variables of the process. The fault diagnosis is based on the on-line monitoring of variables easy to measure in the machine such as voltage, electric current, and temperature. The equipment is a fuel cell system which can operate even when a fault occurs. The fault effects are based on experiments on the fault tolerant fuel cell, which are reproduced in a fuel cell model. A database of fault records is constructed from the fuel cell model, improving the generation time and avoiding permanent damage to the equipment. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, 2 different approaches for estimating the directional wave spectrum based on a vessel`s 1st-order motions are discussed, and their predictions are compared to those provided by a wave buoy. The real-scale data were obtained in an extensive monitoring campaign based on an FPSO unit operating at Campos Basin, Brazil. Data included vessel motions, heading and tank loadings. Wave field information was obtained by means of a heave-pitch-roll buoy installed in the vicinity of the unit. `two of the methods most widely used for this kind of analysis are considered, one based on Bayesian statistical inference, the other consisting of a parametrical representation of the wave spectrum. The performance of both methods is compared, and their sensitivity to input parameters is discussed. This analysis complements a set of previous validations based on numerical and towing-tank results and allows for a preliminary evaluation of reliability when applying the methodology at full scale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Survival models involving frailties are commonly applied in studies where correlated event time data arise due to natural or artificial clustering. In this paper we present an application of such models in the animal breeding field. Specifically, a mixed survival model with a multivariate correlated frailty term is proposed for the analysis of data from over 3611 Brazilian Nellore cattle. The primary aim is to evaluate parental genetic effects on the trait length in days that their progeny need to gain a commercially specified standard weight gain. This trait is not measured directly but can be estimated from growth data. Results point to the importance of genetic effects and suggest that these models constitute a valuable data analysis tool for beef cattle breeding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mixed models have become important in analyzing the results of experiments, particularly those that require more complicated models (e.g., those that involve longitudinal data). This article describes a method for deriving the terms in a mixed model. Our approach extends an earlier method by Brien and Bailey to explicitly identify terms for which autocorrelation and smooth trend arising from longitudinal observations need to be incorporated in the model. At the same time we retain the principle that the model used should include, at least, all the terms that are justified by the randomization. This is done by dividing the factors into sets, called tiers, based on the randomization and determining the crossing and nesting relationships between factors. The method is applied to formulate mixed models for a wide range of examples. We also describe the mixed model analysis of data from a three-phase experiment to investigate the effect of time of refinement on Eucalyptus pulp from four different sources. Cubic smoothing splines are used to describe differences in the trend over time and unstructured covariance matrices between times are found to be necessary.