936 resultados para Bayesian classifier


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work proposes an extended version of the well-known tree-augmented naive Bayes (TAN) classifier where the structure learning step is performed without requiring features to be connected to the class. Based on a modification of Edmonds' algorithm, our structure learning procedure explores a superset of the structures that are considered by TAN, yet achieves global optimality of the learning score function in a very efficient way (quadratic in the number of features, the same complexity as learning TANs). We enhance our procedure with a new score function that only takes into account arcs that are relevant to predict the class, as well as an optimization over the equivalent sample size during learning. These ideas may be useful for structure learning of Bayesian networks in general. A range of experiments shows that we obtain models with better prediction accuracy than naive Bayes and TAN, and comparable to the accuracy of the state-of-the-art classifier averaged one-dependence estimator (AODE). We release our implementation of ETAN so that it can be easily installed and run within Weka.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the computational complexity of finding maximum a posteriori configurations in Bayesian networks whose probabilities are specified by logical formulas. This approach leads to a fine grained study in which local information such as context-sensitive independence and determinism can be considered. It also allows us to characterize more precisely the jump from tractability to NP-hardness and beyond, and to consider the complexity introduced by evidence alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a method for learning Bayesian networks from data sets containing thousands of variables without the need for structure constraints. Our approach is made of two parts. The first is a novel algorithm that effectively explores the space of possible parent sets of a node. It guides the exploration towards the most promising parent sets on the basis of an approximated score function that is computed in constant time. The second part is an improvement of an existing ordering-based algorithm for structure optimization. The new algorithm provably achieves a higher score compared to its original formulation. Our novel approach consistently outperforms the state of the art on very large data sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Learning Bayesian networks with bounded tree-width has attracted much attention recently, because low tree-width allows exact inference to be performed efficiently. Some existing methods [12, 14] tackle the problem by using k-trees to learn the optimal Bayesian network with tree-width up to k. In this paper, we propose a sampling method to efficiently find representative k-trees by introducing an Informative score function to characterize the quality of a k-tree. The proposed algorithm can efficiently learn a Bayesian network with tree-width at most k. Experiment results indicate that our approach is comparable with exact methods, but is much more computationally efficient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bounding the tree-width of a Bayesian network can reduce the chance of overfitting, and allows exact inference to be performed efficiently. Several existing algorithms tackle the problem of learning bounded tree-width Bayesian networks by learning from k-trees as super-structures, but they do not scale to large domains and/or large tree-width. We propose a guided search algorithm to find k-trees with maximum Informative scores, which is a measure of quality for the k-tree in yielding good Bayesian networks. The algorithm achieves close to optimal performance compared to exact solutions in small domains, and can discover better networks than existing approximate methods can in large domains. It also provides an optimal elimination order of variables that guarantees small complexity for later runs of exact inference. Comparisons with well-known approaches in terms of learning and inference accuracy illustrate its capabilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

More and more software projects today are security-related in one way or the other. Requirements engineers often fail to recognise indicators for security problems which is a major source of security problems in practice. Identifying security-relevant requirements is labour-intensive and errorprone. In order to facilitate the security requirements elicitation process, we present an approach supporting organisational learning on security requirements by establishing company-wide experience resources, and a socio-technical network to benefit from them. The approach is based on modelling the flow of requirements and related experiences. Based on those models, we enable people to exchange experiences about security-requirements while they write and discuss project requirements. At the same time, the approach enables participating stakeholders to learn while they write requirements. This can increase security awareness and facilitate learning on both individual and organisational levels. As a basis for our approach, we introduce heuristic assistant tools which support reuse of existing security-related experiences. In particular, they include Bayesian classifiers which issue a warning automatically when new requirements seem to be security-relevant. Our results indicate that this is feasible, in particular if the classifier is trained with domain specific data and documents from previous projects. We show how the ability to identify security-relevant requirements can be improved using this approach. We illustrate our approach by providing a step-by-step example of how we improved the security requirements engineering process at the European Telecommunications Standards Institute (ETSI) and report on experiences made in this application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2015

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coping with an ageing population is a major concern for healthcare organisations around the world. The average cost of hospital care is higher than social care for older and terminally ill patients. Moreover, the average cost of social care increases with the age of the patient. Therefore, it is important to make efficient and fair capacity planning which also incorporates patient centred outcomes. Predictive models can provide predictions which their accuracy can be understood and quantified. Predictive modelling can help patients and carers to get the appropriate support services, and allow clinical decision-makers to improve care quality and reduce the cost of inappropriate hospital and Accident and Emergency admissions. The aim of this study is to provide a review of modelling techniques and frameworks for predictive risk modelling of patients in hospital, based on routinely collected data such as the Hospital Episode Statistics database. A number of sub-problems can be considered such as Length-of-Stay and End-of-Life predictive modelling. The methodologies in the literature are mainly focused on addressing the problems using regression methods and Markov models, and the majority lack generalisability. In some cases, the robustness, accuracy and re-usability of predictive risk models have been shown to be improved using Machine Learning methods. Dynamic Bayesian Network techniques can represent complex correlations models and include small probabilities into the solution. The main focus of this study is to provide a review of major time-varying Dynamic Bayesian Network techniques with applications in healthcare predictive risk modelling.