919 resultados para Bayesian Markov process
Resumo:
As organizations reach higher levels of Business Process Management maturity, they tend to accumulate large collections of process models. These repositories may contain thousands of activities and be managed by different stakeholders with varying skills and responsibilities. However, while being of great value, these repositories induce high management costs. Thus, it becomes essential to keep track of the various model versions as they may mutually overlap, supersede one another and evolve over time. We propose an innovative versioning model, and associated storage structure, specifically designed to maximize sharing across process models and process model versions, reduce conflicts in concurrent edits and automatically handle controlled change propagation. The focal point of this technique is to version single process model fragments, rather than entire process models. Indeed empirical evidence shows that real-life process model repositories have numerous duplicate fragments. Experiments on two industrial datasets confirm the usefulness of our technique.
Resumo:
This paper describes algorithms that can musically augment the realtime performance of electronic dance music by generating new musical material by morphing. Note sequence morphing involves the algorithmic generation of music that smoothly transitions between two existing musical segments. The potential of musical morphing in electronic dance music is outlined and previous research is summarised; including discussions of relevant music theoretic and algorithmic concepts. An outline and explanation is provided of a novel Markov morphing process that uses similarity measures to construct transition matrices. The paper reports on a ‘focus-concert’ study used to evaluate this morphing algorithm and to compare its output with performances from a professional DJ. Discussions of this trial include reflections on some of the aesthetic characteristics of note sequence morphing. The research suggests that the proposed morphing technique could be effectively used in some electronic dance music contexts.
Resumo:
The need to develop effective and efficient training programs has been recognised by all sectors engaged in training. In responding to the above need, focus has been directed to developing good competency statements and performance indicators to measure the outcomes. Very little has been done to understand how the competency statements get translated into good performance. To conceptualise this translation process, a representational model based on an information processing paradigm is proposed and discussed. It is argued that learners’ prior knowledge and the effectiveness of the instructional material are two variables that have significant bearing on how effectively the competency knowledge is translated into outcomes. To contextualise the model examples from apprentice training are used.
Resumo:
This paper is a summary of a PhD thesis proposal. It will explore how the Web 2.0 platform could be applied to enable and facilitate the large-scale participation, deliberation and collaboration of both governmental and non-governmental actors in an ICT supported policy process. The paper will introduce a new democratic theory and a Web 2.0 based e-democracy platform, and demonstrate how different actors would use the platform to develop and justify policy issues.
Resumo:
By integrating two theoretical foundations of entrepreneurship research, behaviour and process, this conceptual paper proposes a new model to examine the behaviour of the entrepreneur across the new venture development process. Existing macro level research on the new venture creation process recognises the entrepreneur as a central agent in the process yet generally avoids, at each stage of the process, an examination of the micro level psychological experiences of the individual entrepreneur. Similarly, behavioural research examining entrepreneur individual differences has failed to systematically explore the emotion and behaviour of the entrepreneur across the cycle of the new venture creation process. We propose a conceptual framework to integrate the new venture creation process of opportunity discovery, evaluation and exploitation, with the psychological capital (efficacy, hope, resilience and optimism) of the individual entrepreneur. Propositions for future research to facilitate deeper insight into the impact of entrepreneur behaviour on the new venture creation process and ultimately the success or failure of the new venture are provided.
Resumo:
Estimating and predicting degradation processes of engineering assets is crucial for reducing the cost and insuring the productivity of enterprises. Assisted by modern condition monitoring (CM) technologies, most asset degradation processes can be revealed by various degradation indicators extracted from CM data. Maintenance strategies developed using these degradation indicators (i.e. condition-based maintenance) are more cost-effective, because unnecessary maintenance activities are avoided when an asset is still in a decent health state. A practical difficulty in condition-based maintenance (CBM) is that degradation indicators extracted from CM data can only partially reveal asset health states in most situations. Underestimating this uncertainty in relationships between degradation indicators and health states can cause excessive false alarms or failures without pre-alarms. The state space model provides an efficient approach to describe a degradation process using these indicators that can only partially reveal health states. However, existing state space models that describe asset degradation processes largely depend on assumptions such as, discrete time, discrete state, linearity, and Gaussianity. The discrete time assumption requires that failures and inspections only happen at fixed intervals. The discrete state assumption entails discretising continuous degradation indicators, which requires expert knowledge and often introduces additional errors. The linear and Gaussian assumptions are not consistent with nonlinear and irreversible degradation processes in most engineering assets. This research proposes a Gamma-based state space model that does not have discrete time, discrete state, linear and Gaussian assumptions to model partially observable degradation processes. Monte Carlo-based algorithms are developed to estimate model parameters and asset remaining useful lives. In addition, this research also develops a continuous state partially observable semi-Markov decision process (POSMDP) to model a degradation process that follows the Gamma-based state space model and is under various maintenance strategies. Optimal maintenance strategies are obtained by solving the POSMDP. Simulation studies through the MATLAB are performed; case studies using the data from an accelerated life test of a gearbox and a liquefied natural gas industry are also conducted. The results show that the proposed Monte Carlo-based EM algorithm can estimate model parameters accurately. The results also show that the proposed Gamma-based state space model have better fitness result than linear and Gaussian state space models when used to process monotonically increasing degradation data in the accelerated life test of a gear box. Furthermore, both simulation studies and case studies show that the prediction algorithm based on the Gamma-based state space model can identify the mean value and confidence interval of asset remaining useful lives accurately. In addition, the simulation study shows that the proposed maintenance strategy optimisation method based on the POSMDP is more flexible than that assumes a predetermined strategy structure and uses the renewal theory. Moreover, the simulation study also shows that the proposed maintenance optimisation method can obtain more cost-effective strategies than a recently published maintenance strategy optimisation method by optimising the next maintenance activity and the waiting time till the next maintenance activity simultaneously.
Resumo:
Seaport container terminals are an important part of the logistics systems in international trades. This paper investigates the relationship between quay cranes, yard machines and container storage locations in a multi-berth and multi-ship environment. The aims are to develop a model for improving the operation efficiency of the seaports and to develop an analytical tool for yard operation planning. Due to the fact that the container transfer times are sequence-dependent and with the large number of variables involve, the proposed model cannot be solved in a reasonable time interval for realistically sized problems. For this reason, List Scheduling and Tabu Search algorithms have been developed to solve this formidable and NP-hard scheduling problem. Numerical implementations have been analysed and promising results have been achieved.
Resumo:
Different from conventional methods for structural reliability evaluation, such as, first/second-order reliability methods (FORM/SORM) or Monte Carlo simulation based on corresponding limit state functions, a novel approach based on dynamic objective oriented Bayesian network (DOOBN) for prediction of structural reliability of a steel bridge element has been proposed in this paper. The DOOBN approach can effectively model the deterioration processes of a steel bridge element and predict their structural reliability over time. This approach is also able to achieve Bayesian updating with observed information from measurements, monitoring and visual inspection. Moreover, the computational capacity embedded in the approach can be used to facilitate integrated management and maintenance optimization in a bridge system. A steel bridge girder is used to validate the proposed approach. The predicted results are compared with those evaluated by FORM method.
Resumo:
Purpose Process modeling is a complex organizational task that requires many iterations and communication between the business analysts and the domain specialists. The challenge of process modeling is exacerbated, when the process of modeling has to be performed in a cross-organizational, distributed environment. In this paper we suggest a 3D environment for collaborative process modeling, using Virtual World technology. Design/methodology/approach We suggest a new collaborative process modeling approach based on Virtual World technology. We describe the design of an innovative prototype collaborative process modeling approach, implemented as a 3D BPMN modeling environment in Second Life. We use a case study to evaluate the suggested approach. Findings Based on our case study application, we show that our approach increases user empowerment and adds significantly to the collaboration and consensual development of process models even when the relevant stakeholders are geographically dispersed. Research limitations implications – We present design work and a case study. More research is needed to more thoroughly evaluate the presented approach in a variety of real-life process modeling settings. Practical implications Our research outcomes as design artifacts are directly available and applicable by business process management professionals and can be used by business, system and process analysts in real-world practice. Originality/value Our research is the first reported attempt to develop a process modeling approach on the basis of virtual world technology. We describe a novel and innovative 3D BPMN modeling environment in Second Life.
Resumo:
This is an invited presentation made as a short preview of the virtual environment research work being undertaken at QUT in the Business Process Management (BPM) research group, known as BPMVE. Three projects are covered, spatial process visualisation, with applications to airport check-in processes, collaborative process modelling using a virtual world BPMN editing tool and business process simulation in virtual worlds using Open Simulator and the YAWL workflow system. In addition, the relationship of this work to Organisational Psychology is briefly explored. Full Video/Audio is available at: http://www.youtube.com/user/BPMVE#p/u/1/rp506c3pPms
Resumo:
This article explores the use of probabilistic classification, namely finite mixture modelling, for identification of complex disease phenotypes, given cross-sectional data. In particular, if focuses on posterior probabilities of subgroup membership, a standard output of finite mixture modelling, and how the quantification of uncertainty in these probabilities can lead to more detailed analyses. Using a Bayesian approach, we describe two practical uses of this uncertainty: (i) as a means of describing a person’s membership to a single or multiple latent subgroups and (ii) as a means of describing identified subgroups by patient-centred covariates not included in model estimation. These proposed uses are demonstrated on a case study in Parkinson’s disease (PD), where latent subgroups are identified using multiple symptoms from the Unified Parkinson’s Disease Rating Scale (UPDRS).
Resumo:
When an organisation becomes aware that one of its products may pose a safety risk to customers, it must take appropriate action as soon as possible or it can be held liable. The ability to automatically trace potentially dangerous goods through the supply chain would thus help organisations fulfill their legal obligations in a timely and effective manner. Furthermore, product recall legislation requires manufacturers to separately notify various government agencies, the health department and the public about recall incidents. This duplication of effort and paperwork can introduce errors and data inconsistencies. In this paper, we examine traceability and notification requirements in the product recall domain from two perspectives: the activities carried out during the manufacturing and recall processes and the data collected during the enactment of these processes. We then propose a workflow-based coordination framework to support these data and process requirements.
Resumo:
Identifying, modelling and documenting business processes usually requires the collaboration of many stakeholders that may be spread across companies in inter-organizational business settings. While there are many process modelling tools available, the support they provide for remote collaboration is still limited. This demonstration showcases a novel prototype application that implements collaborative virtual environment and augmented reality technologies to improve remote collaborative process modelling, with an aim to assisting common collaboration tasks by providing an increased sense of immersion in an intuitive shared work and task space. Our tool is easily deployed using open source software, and commodity hardware, and is expected to assist with saving money on travel costs for large scale process modelling projects covering national and international centres within an enterprise.
Resumo:
Business Process Management (BPM) is a top priority in organisations and is rapidly proliferating as an emerging discipline in practice. However, the current studies show lack of appropriate BPM skilled professionals in the field and a dearth of opportunities to develop BPM expertise. This paper analyses the gap between available BPM-related education in Australia and required BPM capabilities. BPM courses offered by Australian universities and training institutions have been critically analysed and mapped against leading BPM capability frameworks to determine how well current BPM education and training offerings in Australia actually address the core capabilities required for BPM professionals. The outcomes reported here can be used by Australian universities and training institutions to better align and position their training materials to the BPM required capabilities. It could also be beneficial to individuals looking for a systematic and in-depth understanding of BPM capabilities and trainings.
Resumo:
Many initiatives to improve Business processes are emerging. The essential roles and contributions of Business Analyst (BA) and Business Process Management (BPM) professionals to such initiatives have been recognized in literature and practice. The roles and responsibilities of a BA or BPM practitioner typically require different skill-sets; however these differences are often vague. This vagueness creates much confusion in practice and academia. While both the BA and BPM communities have made attempts to describe their domains through capability defining empirical research and developments of Bodies of knowledge, there has not yet been any attempt to identify the commonality of skills required and points of uniqueness between the two professions. This study aims to address this gap and presents the findings of a detailed content mapping exercise (using NVivo as a qualitative data analysis tool) of the International Institution of Business Analysis (IIBA®) Guide to the Business Analysis Body of Knowledge (BABOK® Guide) against core BPM competency and capability frameworks.