980 resultados para Bayes Formula
Resumo:
E1 fr. 16 V es un breve poema en el que, argumentando con rigurosa lógica y utilizando como ejemplo demostrativo el mito de Helena, Safo formula la más antigua teorización conocida sobre la naturaleza de la belleza. Su modernidad es sorprendente; la belleza no es una cualidad absoluta, sino el producto fantasmático del impulso sexual. Los pormenores de su fenomenalogía se desglosan con el apoyo de la tradición homérica: el deslumbramiento inicial trastorna los sentidos creando apariencias ilusorias, ciega la ruzón, enajena, provoca olvido; pero cuando el deseo se extingue retornan memoria y conciencia, y con ellas el dolor. Se entiende así que la Helena que ya está de vuelta, la de la Odisea, proceda a administrar su seducción como una droga analgésica. El proccso se repite constantemente; sus sujetos somos todos, cualquiera, y su actualización afecta, más alla de la singular experiencia psica-física a las prácticas matrimoniales de la época, donde no se contemplava la elección de pareja y la mujer abandonaba su entorno para inscribirse en el del marido. Así la poesía de Safo, que forma parte de la iniciación a la vida adulta femenina, al poner al descubierto la relatividad de la belleza dentro del mecanismo amoroso, distancia a sus pupilas de sus propias emociones y las protege de la soledad insertándolas en una experiencia religiosa compartida.
Resumo:
The synthesis of spinel ferrites with composition Zn1-2xNaxFe2+xO4has been performed and the composition range in which single phase samples are obtained has been defined. The characterization of the samples has been carried out from atomic absorption and X-ray fluorescence analyses, X-ray diffraction patterns, Mössbauer spectroscopy and thermomagnetic measurements. It is show that significant loss of Na does exist when the synthesis is performed at high temperatures. When the Na volatilization is avoided spinel oxides with Na content up to 0.25 atoms per unit formula can be obtained. In this case the increase of the interatomic distances leads to differing fundamental magnetic properties as compared to the equivalent lithium-zinc ferrites.
Resumo:
The structural and electronic properties of Cu2O have been investigated using the periodic Hartree-Fock method and a posteriori density-functional corrections. The lattice parameter, bulk modulus, and elastic constants have been calculated. The electronic structure of and bonding in Cu2O are analyzed and compared with x-ray photoelectron spectroscopy spectra, showing a good agreement for the valence-band states. To check the quality of the calculated electron density, static structure factors and Compton profiles have been calculated, showing a good agreement with the available experimental data. The effective electron and hole masses have been evaluated for Cu2O at the center of the Brillouin zone. The calculated interaction energy between the two interpenetrated frameworks in the cuprite structure is estimated to be around -6.0 kcal/mol per Cu2O formula. The bonding between the two independent frameworks has been analyzed using a bimolecular model and the results indicate an important role of d10-d10 type interactions between copper atoms.
Resumo:
Nucleation rates for tunneling processes in Minkowski and de Sitter space are investigated, taking into account one loop prefactors. In particular, we consider the creation of membranes by an antisymmetric tensor field, analogous to Schwinger pair production. This can be viewed as a model for the decay of a false (or true) vacuum at zero temperature in the thin wall limit. Also considered is the spontaneous nucleation of strings, domain walls, and monopoles during inflation. The instantons for these processes are spherical world sheets or world lines embedded in flat or de Sitter backgrounds. We find the contribution of such instantons to the semiclassical partition function, including the one loop corrections due to small fluctuations around the spherical world sheet. We suggest a prescription for obtaining, from the partition function, the distribution of objects nucleated during inflation. This can be seen as an extension of the usual formula, valid in flat space, according to which the nucleation rate is twice the imaginary part of the free energy. For the case of pair production, the results reproduce those that can be obtained using second quantization methods, confirming the validity of instanton techniques in de Sitter space. Throughout the paper, both the gravitational field and the antisymmetric tensor field are assumed external.
Resumo:
Abstract This thesis presents three empirical studies in the field of health insurance in Switzerland. First we investigate the link between health insurance coverage and health care expenditures. We use claims data for over 60 000 adult individuals covered by a major Swiss Health Insurance Fund, followed for four years; the data show a strong positive correlation between coverage and expenditures. Two methods are developed and estimated in order to separate selection effects (due to individual choice of coverage) and incentive effects ("ex post moral hazard"). The first method uses the comparison between inpatient and outpatient expenditures to identify both effects and we conclude that both selection and incentive effects are significantly present in our data. The second method is based on a structural model of joint demand of health care and health insurance and makes the most of the change in the marginal cost of health care to identify selection and incentive effects. We conclude that the correlation between insurance coverage and health care expenditures may be decomposed into the two effects: 75% may be attributed to selection, and 25 % to incentive effects. Moreover, we estimate that a decrease in the coinsurance rate from 100% to 10% increases the marginal demand for health care by about 90% and from 100% to 0% by about 150%. Secondly, having shown that selection and incentive effects exist in the Swiss health insurance market, we present the consequence of this result in the context of risk adjustment. We show that if individuals choose their insurance coverage in function of their health status (selection effect), the optimal compensations should be function of the se- lection and incentive effects. Therefore, a risk adjustment mechanism which ignores these effects, as it is the case presently in Switzerland, will miss his main goal to eliminate incentives for sickness funds to select risks. Using a simplified model, we show that the optimal compensations have to take into account the distribution of risks through the insurance plans in case of self-selection in order to avoid incentives to select risks.Then, we apply our propositions to Swiss data and propose a simple econometric procedure to control for self-selection in the estimation of the risk adjustment formula in order to compute the optimal compensations.
Resumo:
The IPERS plan is a defined benefit pension plan. The lifetime monthly benefit you receive is predictable and stable because it is calculated using a formula. Your benefits grow with you throughout your IPERS-covered employment. As your years of service and salary increase, your IPERS benefits grow too. IPERS, a public agency, was established for the sole purpose of providing a retirement plan to public employees throughout Iowa. As a public agency, IPERS’ goals are aligned with members’. IPERS benefits are designed to supplement personal savings and Social Security benefits in retirement. Benefits also offer financial protection for families in the event of death or disability.
Resumo:
It’s really quite simple. IPERS is a sure thing. IPERS benefits carry a lifetime guarantee. A bad economy and declining stock market do not decrease your benefits. Instead, your benefit amount is determined by a pre-established formula that replaces a percentage of your pre-retirement wages. How close your benefits get to the maximum of the IPERS plan—replacing 65 percent of pre-retirement wages or 72 percent for public safety personnel—is mostly up to you. Current employees don’t have to worry about where to invest or what to do when there is a slump in the stock market. Retirees don’t have to worry that a down market will reduce their monthly payments, and they never have to worry about outliving their IPERS benefits. Disability payments and death benefits act as a safety net for members and their families.
Resumo:
For more than 50 years, IPERS has provided a core retirement plan covering most Iowa local and state public employees. With approximately 300,000 members and almost 2,400 covered employers, IPERS is the largest public retirement system in Iowa. The Legislature designed IPERS to provide monthly lifetime annuities that supplement social security benefits and personal savings, enabling public employees to care for themselves in retirement. The Legislature also intended for IPERS to be an employee benefit that would help Iowa’s public employers recruit and retain qualified personnel. As a defined benefit plan, the monthly benefit IPERS members receive is calculated using a formula. A member’s benefit increases as his or her years of service and salary increase. Because IPERS is a defined benefit plan, the Legislature is assured that the money contributed by public employees and their employers for retirement is used as intended. The benefit is paid as a lifetime monthly annuity. IPERS members cannot borrow or withdraw their money while in public employment.
Resumo:
We study spatio-temporal pattern formation in a ring of N oscillators with inhibitory unidirectional pulselike interactions. The attractors of the dynamics are limit cycles where each oscillator fires once and only once. Since some of these limit cycles lead to the same pattern, we introduce the concept of pattern degeneracy to take it into account. Moreover, we give a qualitative estimation of the volume of the basin of attraction of each pattern by means of some probabilistic arguments and pattern degeneracy, and show how they are modified as we change the value of the coupling strength. In the limit of small coupling, our estimative formula gives a pefect agreement with numerical simulations.
Resumo:
We have studied the relaxation dynamics of a dilute assembly of ferromagnetic particles in suspension. A formalism based on the Smoluchowski equation, describing the evolution of the probability density for the directions of the magnetic moment and of the axis of easy magnetization of the particles, has been developed. We compute the rotational viscosity from a Green-Kubo formula and give an expression for the relaxation time of the particles which comes from the dynamic equations of the correlation functions. Concerning the relaxation time for the particles, our results agree quite well with experiments performed on different samples of ferromagnetic particles for which the magnetic energy, associated with the interaction between the magnetic moments and the external field, or the energy of anisotropy plays a dominant role.
Resumo:
Context: Foreign body aspiration (FbA) is a serious problem in children. Accurate clinical and radiographic diagnosis is important because missed or delayed diagnosis can result in respiratory difficulties ranging from life-treatening airway obstruction to chronic wheezing or recurrent pneumonia. Bronchoscopy also has risks and accurate clinical and radiographc diagnosis can support the decision of bronchoscopy. Objective: To rewiev the diagnostic accuracy of clinical presentation (CP) and pulmonary radiograph (PR) for the diagnosis of FbA. There is no previous rewievMethods: A search of Medline is conducted for articles containing data regarding CP and PR signes of FbA. Calculation of likelihood ratios (LR) and pre and post test probability using Bayes theorem were performed for all signs of CP and PR. Inclusion criteria: Articles containing prospective data regarding CP and PR of FbA. Exclusion criteria: Retrospectives studies. Articles containing incomplete data for calculation of LR. Results: Five prospectives studies are included with a total of 585 patients. Prevalence of FbA is 63% in children suspected of FbA. If CP is normal, probability of FbA is 25% and if PR is normal, probability is 14%. If CP is pathologic, probability of FbA is 69-76% with presence of cough (LR = 1.32) or dyspnea (LR = 1.84) or localized crackles (LR = 1.5). Probability is 81-88% if cyanosis (LR = 4.8) or decreased breaths sounds (LR = 4.3) or asymetric auscultation (LR = 2.9) or localized wheezing (LR = 2.5) are present. When CP is anormal and PR show mediatinal shift (LR = 100), pneumomediatin (LR = 100), radio opaque foreign body (LR = 100), lobar distention (LR = 4), atelectasis (LR = 2.5), inspiratory/expiratory abnormal (LR = 7), the probability of FbA is 96-100%. If CP is normal and PR is abnormal the probability is 40-100%. If CP is abnormal and PR is normal the probability is 55-75%. Conclusions: This rewiev of prospective studies demonstrates the importance of CP and PR and an algorithm can be proposed. When CP is abnormal with or without PR pathologic, the probability of FbA is high and bronchoscopy is indicated. When CP and PR are normal the probability of FbA is low and bronchoscopy is not necessary immediatly, observation should be proposed. This approach should be validated with prospective study.
Resumo:
In this Contribution we show that a suitably defined nonequilibrium entropy of an N-body isolated system is not a constant of the motion, in general, and its variation is bounded, the bounds determined by the thermodynamic entropy, i.e., the equilibrium entropy. We define the nonequilibrium entropy as a convex functional of the set of n-particle reduced distribution functions (n ? N) generalizing the Gibbs fine-grained entropy formula. Additionally, as a consequence of our microscopic analysis we find that this nonequilibrium entropy behaves as a free entropic oscillator. In the approach to the equilibrium regime, we find relaxation equations of the Fokker-Planck type, particularly for the one-particle distribution function.
Resumo:
We conduct a large-scale comparative study on linearly combining superparent-one-dependence estimators (SPODEs), a popular family of seminaive Bayesian classifiers. Altogether, 16 model selection and weighing schemes, 58 benchmark data sets, and various statistical tests are employed. This paper's main contributions are threefold. First, it formally presents each scheme's definition, rationale, and time complexity and hence can serve as a comprehensive reference for researchers interested in ensemble learning. Second, it offers bias-variance analysis for each scheme's classification error performance. Third, it identifies effective schemes that meet various needs in practice. This leads to accurate and fast classification algorithms which have an immediate and significant impact on real-world applications. Another important feature of our study is using a variety of statistical tests to evaluate multiple learning methods across multiple data sets.
Resumo:
Fekete points are the points that maximize a Vandermonde-type determinant that appears in the polynomial Lagrange interpolation formula. They are well suited points for interpolation formulas and numerical integration. We prove the asymptotic equidistribution of Fekete points in the sphere. The way we proceed is by showing their connection to other arrays of points, the so-called Marcinkiewicz-Zygmund arrays and interpolating arrays, that have been studied recently.