969 resultados para BIOFILM


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: The purpose of this study was to examine the leukotoxin promoter types of Aggregatibacter actinomycetemcomitans clones in subjects with generalized aggressive periodontitis (GAgP) and in their family members (FM). Material and Methods: Thirty-five patients with GAgP (33.9+/-7.1 years), 33 of their FM (22.8+/-11.4 years), and 41 patients with chronic periodontitis (CP) (44.1+/-9.4 years) were clinically analyzed using the plaque index, gingival index, probing depth (PD), and clinical attachment level (CAL). Subgingival biofilm samples were collected from four interproximal periodontal sites (>PD and >CAL) of each patient. The presence of A. actinomycetemcomitans and its leukotoxic clone was confirmed by polymerase chain reaction (PCR). Results: A. actinomycetemcomitans was observed in 23 (51.1%) GAgP patients and 16 (30.1%) CP patients. Thirty-seven (94.8%) patients showed minimally leukotoxic strains and 2 (5.1%) showed highly leukotoxic strains. In the FM group, 10 (30.3%) had aggressive periodontitis (AgP), 12 (36.3%) had CP, 11 (33.3%) were periodontally healthy or had gingivitis, and 12.2% were A. actinomycetemcomitans positive. Greater full mouth PD and CAL were observed in GAgP patients positive for the bacteria than those negative for it (p<0.05), and the presence of A. actinomycetemcomitans positively correlated with GAgP (Odds ratio, 3.1; confidence interval, 1.4-7.0; p=0.009). Conclusions: The presence of A. actinomycetemcomitans was associated with the clinical condition of GAgP, with most patients exhibiting a generalized form of the disease and minimally leukotoxic clones. Most of the relatives of GAgP patients presented either CP or AgP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the current review was to investigate the implications of the surface and bulk properties of abutment implants and their degradation in relation to periodontal health. The success of dental implants is no longer a challenge for dentistry. The scientific literature presents several types of implants that are specific for each case. However, in cases of prosthetics components, such as abutments, further research is needed to improve the materials used to avoid bacterial adhesion and enhance contact with epithelial cells. The implanted surfaces of the abutments are composed of chemical elements that may degrade under different temperatures or be damaged by the forces applied onto them. This study showed that the resulting release of such chemical elements could cause inflammation in the periodontal tissue. At the same time, the surface characteristics can be altered, thus favoring biofilm development and further increasing the inflammation. Finally, if not treated, this inflammation can cause the loss of the implant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Odontologia - FOAR

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Candida albicans is classified into different serotypes according to cell wall mannan composition and cell surface hydrophobicity. Since the effectiveness of photodynamic therapy (PDT) depends on the cell wall structure of microorganisms, the objective of this study was to compare the sensitivity of in vitro biofilms of C. albicans serotypes A and B to antimicrobial PDT. Reference strains of C. albicans serotype A (ATCC 36801) and serotype B (ATCC 36802) were used for the assays. A gallium-aluminum-arsenide laser (660 nm) was used as the light source and methylene blue (300 mu M) as the photosensitizer. After biofilm formation on the bottom of a 96-well microplate for 48 h, each Candida strain was submitted to assays: PDT consisting of laser and photosensitizer application (L + P+), laser application alone (L + P-), photosensitizer application alone (L-P+), and application of saline as control (L-P-). After treatment, biofilm cells were scraped off and transferred to tubes containing PBS. The content of the tubes was homogenized, diluted, and seeded onto Sabouraud agar plates to determine the number of colony-forming units (CFU/mL). The results were compared by analysis of variance and Tukey test (p < 0.05). The two strains studied were sensitive to PDT (L + P+), with a log reduction of 0.49 for serotype A and of 2.34 for serotype B. Laser application alone only reduced serotype B cells (0.53 log), and the use of the photosensitizer alone had no effect on the strains tested. It can be concluded that in vitro biofilms of C. albicans serotype B were more sensitive to PDT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AimTo evaluate the antibiofilm activity of sodium hypochlorite (NaOCl) and chlorhexidine (CHX) solutions associated with cetrimide (CTR), and QMiX using confocal laser scanning microscopy.MethodologyEnterococcus faecalis (ATCC- 29212) biofilms were induced on bovine dentine blocks for 14days. The dentine blocks containing biofilm were immersed for 1min in the following solutions: 2.5% NaOCl; 2.5% NaOCl+0.2% CTR; 2% CHX; 2% CHX+0.2% CTR; 0.2% CTR; QMiX. After contact with the solutions, the dentine blocks were stained with Live/Dead((R)) BacLight for analysis of the remaining biofilm using confocal laser scanning microscope. Images were evaluated using the BioImage_L software to determine the total biovolume (m(3)), the green biovolume (live cells) (m(3)) and the percentage of substrate coverage (%). The data were subjected to nonparametric statistical test using Kruskal-Wallis and Dunn's tests at 5% significance level.ResultsAfter exposure to irrigants, the total biovolume observed for CHX, CHX+CTR, CTR, QMiX was similar to distilled water (P>0.05). NaOCl and NaOCl+CTR had the lowest total and green biovolume. The CTR and QMiX had intermediate green biovolume, with greater antibacterial activity than CHX and CHX+CTR (P<0.05). The NaOCl and NaOCl+CTR solutions were associated with microorganism removal and substrate cleaning ability.ConclusionsNaOCl and NaOCl+CTR solutions were effective on microorganism viability and were able to eliminate biofilm. The addition of cetrimide did not influence antibacterial activity.