931 resultados para BCH CODES
Resumo:
The Finite Element Method (FEM) is a way of numerical solution applied in different areas, as simulations used in studies to improve cardiac ablation procedures. For this purpose, the meshes should have the same size and histological features of the focused structures. Some methods and tools used to generate tetrahedral meshes are limited mainly by the use conditions. In this paper, the integration of Open Source Softwares is presented as an alternative to solid modeling and automatic mesh generation. To demonstrate its efficiency, the cardiac structures were considered as a first application context: atriums, ventricles, valves, arteries and pericardium. The proposed method is feasible to obtain refined meshes in an acceptable time and with the required quality for simulations using FEM.
Resumo:
Cognitive radio is a growing zone in wireless communication which offers an opening in complete utilization of incompetently used frequency spectrum: deprived of crafting interference for the primary (authorized) user, the secondary user is indorsed to use the frequency band. Though, scheming a model with the least interference produced by the secondary user for primary user is a perplexing job. In this study we proposed a transmission model based on error correcting codes dealing with a countable number of pairs of primary and secondary users. However, we obtain an effective utilization of spectrum by the transmission of the pairs of primary and secondary users' data through the linear codes with different given lengths. Due to the techniques of error correcting codes we developed a number of schemes regarding an appropriate bandwidth distribution in cognitive radio.
Resumo:
Um código BCH C (respectivamente, um código BCH C 0 ) de comprimento n sobre o anel local Zp k (respectivamente, sobre o corpo Zp) é um ideal no anel Zpk [X] (Xn−1) (respectivamente, no anel Zp[X] (Xn−1) ), que ´e gerado por um polinômio mônico que divide Xn−1. Shankar [1] mostrou que as raízes de Xn−1 são as unidades do anel de Galois GR(p k , s) (respectivamente, corpo de Galois GF(p, s)) que é uma extensão do anel Zp k (respectivamente, do corpo Zp), onde s é o grau de um polinômio irredutível f(X) ∈ Zp k [X]. Neste estudo, assumimos que para si = b i , onde b é um primo e i é um inteiro não negativo tal que 0 ≤ i ≤ t, existem extensões de anéis de Galois correspondentes GR(p k , si) (respectivamente, extensões do corpo de Galois GF(p, si)) do anel Zp k (respectivamente, do corpo Zp). Assim, si = b i para i = 2 ou si = b i para i > 2. De modo análogo a [1], neste trabalho, apresentamos uma sequência de códigos BCH C0, C1, · · · , Ct−1C sobre Zp k de comprimentos n0, n1, · · · , nt−1, nt , e uma sequência de códigos BCH C 0 0 , C0 1 , · · · , C0 t−1 , C0 sobre Zp de comprimentos n0, n1, · · · , nt−1, nt , onde cada ni divide p si − 1. Palavras Chave: Anel de Galois, corpo de Galois, código BCH.
Resumo:
In this paper, we present a decoding principle for Goppa codes constructed by generalized polynomials, which is based on modified Berlekamp-Massey algorithm. This algorithm corrects all errors up to the Hamming weight $t\leq 2r$, i.e., whose minimum Hamming distance is $2^{2}r+1$.
Resumo:
A Goppa code is described in terms of a polynomial, known as Goppa polynomial, and in contrast to cyclic codes, where it is difficult to estimate the minimum Hamming distance d from the generator polynomial. Furthermore, a Goppa code has the property that d ≥ deg(h(X))+1, where h(X) is a Goppa polynomial. In this paper, we present a decoding principle for Goppa codes constructed by generalized polynomials, which is based on modified Berlekamp-Massey algorithm.
Resumo:
The frequency spectrums are inefficiently utilized and cognitive radio has been proposed for full utilization of these spectrums. The central idea of cognitive radio is to allow the secondary user to use the spectrum concurrently with the primary user with the compulsion of minimum interference. However, designing a model with minimum interference is a challenging task. In this paper, a transmission model based on cyclic generalized polynomial codes discussed in [2] and [15], is proposed for the improvement in utilization of spectrum. The proposed model assures a non interference data transmission of the primary and secondary users. Furthermore, analytical results are presented to show that the proposed model utilizes spectrum more efficiently as compared to traditional models.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This thesis regards the Wireless Sensor Network (WSN), as one of the most important technologies for the twenty-first century and the implementation of different packet correcting erasure codes to cope with the ”bursty” nature of the transmission channel and the possibility of packet losses during the transmission. The limited battery capacity of each sensor node makes the minimization of the power consumption one of the primary concerns in WSN. Considering also the fact that in each sensor node the communication is considerably more expensive than computation, this motivates the core idea to invest computation within the network whenever possible to safe on communication costs. The goal of the research was to evaluate a parameter, for example the Packet Erasure Ratio (PER), that permit to verify the functionality and the behavior of the created network, validate the theoretical expectations and evaluate the convenience of introducing the recovery packet techniques using different types of packet erasure codes in different types of networks. Thus, considering all the constrains of energy consumption in WSN, the topic of this thesis is to try to minimize it by introducing encoding/decoding algorithms in the transmission chain in order to prevent the retransmission of the erased packets through the Packet Erasure Channel and save the energy used for each retransmitted packet. In this way it is possible extend the lifetime of entire network.