934 resultados para BARE
Resumo:
Cold-water corals provide an important habitat for a rich fauna along the continental margins and slopes. Although these azooxanthellate corals are considered particularly sensitive to ocean acidification, their responses to natural variations in pH and aragonite saturation are largely unknown due to the difficulty of studying their ecology in deep waters. Previous SCUBA investigations have shown an exceptionally shallow population of the cold-water coral Desmophyllum dianthus in near-surface waters of Comau Fjord, a stratified 480 m deep basin in northern Chilean Patagonia with suboxic deep waters. Here, we use a remotely operated vehicle to quantitatively investigate the distribution of D. dianthus and its physico-chemical drivers in so far uncharted naturally acidified waters. Remarkably, D. dianthus was ubiquitous throughout the fjord, but particularly abundant between 20 and 280 m depth in a pH range of 8.4 to 7.4. The persistence of individuals in aragonite-undersaturated waters suggests that present-day D. dianthus in Comau Fjord may show pre-acclimation or pre-adaptation to conditions of ocean acidification predicted to reach over 70% of the known deep-sea coral locations by the end of the century.
Resumo:
High-latitude ecosystems play an important role in the global carbon cycle and in regulating the climate system and are presently undergoing rapid environmental change. Accurate land cover data sets are required to both document these changes as well as to provide land-surface information for benchmarking and initializing Earth system models. Earth system models also require specific land cover classification systems based on plant functional types (PFTs), rather than species or ecosystems, and so post-processing of existing land cover data is often required. This study compares over Siberia, multiple land cover data sets against one another and with auxiliary data to identify key uncertainties that contribute to variability in PFT classifications that would introduce errors in Earth system modeling. Land cover classification systems from GLC 2000, GlobCover 2005 and 2009, and MODIS collections 5 and 5.1 are first aggregated to a common legend, and then compared to high-resolution land cover classification systems, vegetation continuous fields (MODIS VCFs) and satellite-derived tree heights (to discriminate against sparse, shrub, and forest vegetation). The GlobCover data set, with a lower threshold for tree cover and taller tree heights and a better spatial resolution, tends to have better distributions of tree cover compared to high-resolution data. It has therefore been chosen to build new PFT maps for the ORCHIDEE land surface model at 1 km scale. Compared to the original PFT data set, the new PFT maps based on GlobCover 2005 and an updated cross-walking approach mainly differ in the characterization of forests and degree of tree cover. The partition of grasslands and bare soils now appears more realistic compared with ground truth data. This new vegetation map provides a framework for further development of new PFTs in the ORCHIDEE model like shrubs, lichens and mosses, to represent the water and carbon cycles in northern latitudes better. Updated land cover data sets are critical for improving and maintaining the relevance of Earth system models for assessing climate and human impacts on biogeochemistry and biophysics.
Resumo:
The giant pockmark REGAB (West African margin, 3160 m water depth) is an active methane-emitting cold seep ecosystem, where the energy derived from microbially mediated oxidation of methane supports high biomass and diversity of chemosynthetic communities. Bare sediments interspersed with heterogeneous chemosynthetic assemblages of mytilid mussels, vesicomyid clams and siboglinid tubeworms form a complex seep ecosystem. To better understand if benthic bacterial communities reflect the patchy distribution of chemosynthetic fauna, all major chemosynthetic habitats at REGAB were investigated using an interdisciplinary approach combining porewater geochemistry, in situ quantification of fluxes and consumption of methane, as well bacterial community fingerprinting. This study revealed that sediments populated by different fauna assemblages show distinct biogeochemical activities and are associated with distinct sediment bacterial communities. The methane consumption and methane effluxes ranged over one to two orders of magnitude across habitats, and reached highest values at the mussel habitat, which hosted a different bacterial community compared to the other habitats. Clam assemblages had a profound impact on the sediment geochemistry, but less so on the bacterial community structure. Moreover, all clam assemblages at REGAB were restricted to sediments characterized by complete methane consumption in the seafloor, and intermediate biogeochemical activity. Overall, variations in the sediment geochemistry were reflected in the distribution of both fauna and microbial communities; and were mostly determined by methane flux.
Resumo:
Long term global archives of high-moderate spatial resolution, multi-spectral satellite imagery are now readily accessible, but are not being fully utilised by management agencies due to the lack of appropriate methods to consistently produce accurate and timely management ready information. This work developed an object-based remote sensing approach to map land cover and seagrass distribution in an Australian coastal environment for a 38 year Landsat image time-series archive (1972-2010). Landsat Multi-Spectral Scanner (MSS), Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) imagery were used without in situ field data input (but still using field knowledge) to produce land and seagrass cover maps every year data were available, resulting in over 60 map products over the 38 year archive. Land cover was mapped annually using vegetation, bare ground, urban and agricultural classes. Seagrass distribution was also mapped annually, and in some years monthly, via horizontal projected foliage cover classes, sand and deep water. Land cover products were validated using aerial photography and seagrass maps were validated with field survey data, producing several measures of accuracy. An average overall accuracy of 65% and 80% was reported for seagrass and land cover products respectively, which is consistent with other studies in the area. This study is the first to show moderate spatial resolution, long term annual changes in land cover and seagrass in an Australian environment, created without the use of in situ data; and only one of a few similar studies globally. The land cover products identify several long term trends; such as significant increases in South East Queensland's urban density and extent, vegetation clearing in rural and rural-residential areas, and inter-annual variation in dry vegetation types in western South East Queensland. The seagrass cover products show that there has been a minimal overall change in seagrass extent, but that seagrass cover level distribution is extremely dynamic; evidenced by large scale migrations of higher seagrass cover levels and several sudden and significant changes in cover level. These mapping products will allow management agencies to build a baseline assessment of their resources, understand past changes and help inform implementation and planning of management policy to address potential future changes.
Resumo:
In 2014, UniDive (The University of Queensland Underwater Club) conducted an ecological assessment of the Point Lookout Dive sites for comparison with similar surveys conducted in 2001. Involvement in the project was voluntary. Members of UniDive who were marine experts conducted training for other club members who had no, or limited, experience in identifying marine organisms and mapping habitats. Since the 2001 detailed baseline study, no similar seasonal survey has been conducted. The 2014 data is particularly important given that numerous changes have taken place in relation to the management of, and potential impacts on, these reef sites. In 2009, Moreton Bay Marine Park was re-zoned, and Flat Rock was converted to a marine national park zone (Green zone) with no fishing or anchoring. In 2012, four permanent moorings were installed at Flat Rock. Additionally, the entire area was exposed to the potential effects of the 2011 and 2013 Queensland floods, including flood plumes which carried large quantities of sediment into Moreton Bay and surrounding waters. The population of South East Queensland has increased from 2.49 million in 2001 to 3.18 million in 2011 (BITRE, 2013). This rapidly expanding coastal population has increased the frequency and intensity of both commercial and recreational activities around Point Lookout dive sites (EPA 2008). Methodology used for the PLEA project was based on the 2001 survey protocols, Reef Check Australia protocols and Coral Watch methods. This hybrid methodology was used to monitor substrate and benthos, invertebrates, fish, and reef health impacts. Additional analyses were conducted with georeferenced photo transects. The PLEA marine surveys were conducted over six weekends in 2014 totaling 535 dives and 376 hours underwater. Two training weekends (February and March) were attended by 44 divers, whilst biological surveys were conducted on seasonal weekends (February, May, July and October). Three reefs were surveyed, with two semi-permanent transects at Flat Rock, two at Shag Rock, and one at Manta Ray Bommie. Each transect was sampled once every survey weekend, with the transect tapes deployed at a depth of 10 m below chart datum. Fish populations were assessed using a visual census along 3 x 20 m transects. Each transect was 5 m wide (2.5 m either side of the transect tape), 5 m high and 20 m in length. Fish families and species were chosen that are commonly targeted by recreational or commercial fishers, or targeted by aquarium collectors, and that were easily identified by their body shape. Rare or otherwise unusual species were also recorded. Target invertebrate populations were assessed using visual census along 3 x 20 m transects. Each transect was 5 m wide (2.5 m either side of the transect tape) and 20 m in length. The diver surveying invertebrates conducted a 'U-shaped' search pattern, covering 2.5 m on either side of the transect tape. Target impacts were assessed using a visual census along the 3 x 20 m transects. Each transect was 5 m wide (2.5 m either side of the transect tape) and 20 m in length. The transect was surveyed via a 'U-shaped' search pattern, covering 2.5 m on either side of the transect tape. Substrate surveys were conducted using the point sampling method, enabling percentage cover of substrate types and benthic organisms to be calculated. The substrate or benthos under the transect line was identified at 0.5m intervals, with a 5m gap between each of the three 20m segments. Categories recorded included various growth forms of hard and soft coral, key species/growth forms of algae, other living organisms (i.e. sponges), recently killed coral, and, non-living substrate types (i.e. bare rock, sand, rubble, silt/clay).
Resumo:
Håkon Mosby Mud Volcano (HMMV, SW Barents Sea slope, 1280 m) is one of the numerous cold methane-venting seeps existing along the continental margins. Analyses of video-guided core samples revealed extreme differences in the diversity and density of the metazoan meiobenthic communities associated with the different sub-habitats (centre, microbial mats, Pogonophora field, outer rim) of this mud volcano. Diversity was lowest in the sulphidic, microbial mat sediments that supported the highest standing stock, with unusually high densities (11000 ind./10 cm**2) of 1 nematode species related to Geomonhystera disjuncta. Stable carbon isotope analyses revealed that this nematode species was thriving on chemosynthetically derived food sources in these sediments. Ovoviviparous reproduction has been identified as an important adaptation of parents securing the survival and development of their brood in this toxic environment. The proliferation of this single species in exclusive association with free-living, sulphide-oxidising bacteria (Beggiatoa) indicates that its dominance is strongly related to trophic specialisation, evidently uncommon among the meiofauna. This chemoautotrophic association was replaced by copepods in the bare, sulphide-free sediments of the volcano's centre, dominated by aerobic methane oxidation as the chemosynthetic process. Copepods and nauplii reached maximum densities and dominance in the volcano's centre (500 ind./10 cm**2). Their strongly depleted carbon isotope signatures indicated a trophic link with methane-derived carbon. This proliferation of only selected meiobenthic species supported by chemosynthetically derived carbon suggests that, in addition to the sediment geochemistry, the associated reduced meiobenthic diversity may equally be related to the trophic resource specificity in HMMV sub-habitats.
Resumo:
The severity of the impact of elevated atmospheric pCO2 to coral reef ecosystems depends, in part, on how seawater pCO2 affects the balance between calcification and dissolution of carbonate sediments. Presently, there are insufficient published data that relate concentrations of pCO2 and CO3**2- to in situ rates of reef calcification in natural settings to accurately predict the impact of elevated atmospheric pCO2 on calcification and dissolution processes. Rates of net calcification and dissolution, CO3**2- concentrations, and pCO2 were measured, in situ, on patch reefs, bare sand, and coral rubble on the Molokai reef flat in Hawaii. Rates of calcification ranged from 0.03 to 2.30 mmol CaCO3/m**2/h and dissolution ranged from -0.05 to -3.3 mmol CaCO3/m**2/h. Calcification and dissolution varied diurnally with net calcification primarily occurring during the day and net dissolution occurring at night. These data were used to calculate threshold values for pCO2 and CO3**2- at which rates of calcification and dissolution are equivalent. Results indicate that calcification and dissolution are linearly correlated with both CO3**2- and pCO2. Threshold pCO2 and CO3**2- values for individual substrate types showed considerable variation. The average pCO2 threshold value for all substrate types was 654±195 µatm and ranged from 467 to 1003 µatm. The average CO3**2- threshold value was 152±24 µmol/kg, ranging from 113 to 184 µmol/kg. Ambient seawater measurements of pCO2 and CO3**2- indicate that CO3**2- and pCO2 threshold values for all substrate types were both exceeded, simultaneously, 13% of the time at present day atmospheric pCO2 concentrations. It is predicted that atmospheric pCO2 will exceed the average pCO2 threshold value for calcification and dissolution on the Molokai reef flat by the year 2100.
Resumo:
Legs 106-109 achieved the first basaltic bare-rock drill hole, on a small volcano (Serocki volcano) located on the flanks of the rift valley in the MAR about 70 km south of the Kane fracture zone. Because of severe technical difficulties only 50.5 m of basalt below seafloor was recovered. Geochemical analysis shows that the recovered basalts display typical N-MORB characteristics as expected in this segment of the Mid-Atlantic ridge. The lava flows display rather equivalent geochemical characteristics all over the drilled section and show the imprint of a previous magmatic differentiation suffered by the magmas before their emission, indicative of a fractional crystallization of plagioclase-bearing cumulates. The incompatible and alkali element content of these 648B magmas is very low, a feature which resembles those of other N-MORB. The geochemical characteristics of these basalts look closely similar to those of basalts from the same flow line emitted respectively 10 m.y. (Hole 395, Legs 45-46), and 110 m.y. (Hole 417A, Legs 51-53) ago, supporting the persistence in this ridge segment of a mantle source with depleted characteristics over the last 110 m.y., but with some variations in the degree of depletion of the source along this period. Although these rocks appear fresh, the imprint of an incipient low temperature alteration can be noticed in a few samples, as evidenced by slight increases of alkali, U elements, and 87Sr/86Sr isotopic compositions.
Resumo:
The Holocene development of a treed palsa bog and a peat plateau bog, located near the railroad to Churchill in the Hudson Bay Lowlands of northeastern Manitoba, was traced using peat macrofossil and radiocarbon analyses. Both sites first developed as wet rich fens through paludification of forested uplands around 6800 cal. yr BP. Results show a 20th-century age for the palsa formation and repeated periods of permafrost aggradation and collapse at the peat plateau site during the late Holocene. This timing of permafrost dynamics corroborates well with that inferred from previous studies on other permafrost peatlands in the same region. The developmental history of the palsa and peat plateau bogs is similar to that of adjacent permafrost-free fens, except for the specific frost heave and collapse features associated with permafrost dynamics. Permafrost aggradation and degradation is ascribed to regional climatic, local autogenic and other factors. Particularly the very recent palsa development can be assessed in terms of climatic changes as inferred from meteorological data and surface hydrological changes related to construction of the railroad. The results indicate that cold years with limited snowfall as well as altered drainage patterns associated with infrastructure development may have contributed to the recent palsa formation.
Resumo:
A large diameter piston core containing 8.35 m of metalliferous sediment has been recovered from a small abyssal valley in the remote Southwest Pacific Basin (31°42.194'S, 143°30.331'W; 5082 m water depth), providing unique insight into hydrothermal activity and eolian sedimentation there since the early Oligocene. A combination of fish-teeth Sr-isotope stratigraphy and INAA geochemical data reveals an exponentially decreasing hydrothermal flux 31 Ma to the present. Although hydrothermal sedimentation related to seafloor spreading explains this trend, a complex history of late Eocene/early Oligocene ridge jumps, propagating rifts and plate tectonic reorganization of South Pacific seafloor could have also played a role. A possible hiatus in deposition, as recorded by changes in core composition just below 2 m depth, is beyond the resolution of the fish teeth Sr isotope dating method employed here; however, the timing of this interval may be coincident with extinction of the Pacific-Farallon Ridge at ~20 Ma. A low flux eolian component accumulating at this site shows an increase relative to the hydrothermal component above 2 m depth, consistent with dust-generating continental sources far to the west (Australia/New Zealand). This is the first long-term paleoceanographic record obtained from within the South Pacific "bare zone" (Rea et al., 2006), an anomalous region where Pacific seafloor has largely escaped sediment accumulation since the Late Cretaceous.
Resumo:
Habitat fragmentation alters the edges of remnant habitat patches. We examined changes in the plant community and soil in relation to distance from edge and edge type for shrub-steppe and pine savannah grasslands in southern British Columbia, Canada. Community composition showed significant nonlinear relationships with distance-to-edge more frequently at paved roads and fruit crops than at dirt roads or control sites (i.e., in the interior of grassland patches), with changes typically extending 25-30 m. More exotic species and fewer native species were found near edges, and edges showed decreased cryptogam cover and increased bare ground, especially near paved roads. The soil factors that best predicted compositional changes were soil pH and Cu/Mn at paved roads, soil pH and nitrogen at fruit crops, and soil resistance at dirt roads. Variation partitioning suggested that both direct (e.g., propagule pressure) and indirect (environmental change) factors mediated edge-related community changes, and provided evidence that nonlinear responses at developed edges were not due to natural gradients. Given the range of grassland patch sizes in this region (many patches 1-100 ha), the edge effects we observed represent a considerable loss of "core" habitat, which must be accounted for in conservation planning and site restoration.
Resumo:
The severity of the impact of elevated atmospheric pCO2 to coral reef ecosystems depends, in part, on how seawater pCO2 affects the balance between calcification and dissolution of carbonate sediments. Presently, there are insufficient published data that relate concentrations of pCO2 and CO3 to in situ rates of reef calcification in natural settings to accurately predict the impact of elevated atmospheric pCO2 on calcification and dissolution processes. Rates of net calcification and dissolution, CO3 concentrations, and pCO2 were measured, in situ, on patch reefs, bare sand, and coral rubble on the Molokai reef flat in Hawaii. Rates of calcification ranged from 0.03 to 2.30 mmol CaCO3 m**-2 h**-1 and dissolution ranged from -0.05 to -3.3 mmol CaCO3 m**-2 h**-1. Calcification and dissolution varied diurnally with net calcification primarily occurring during the day and net dissolution occurring at night. These data were used to calculate threshold values for pCO2 and CO3 at which rates of calcification and dissolution are equivalent. Results indicate that calcification and dissolution are linearly correlated with both CO3 and pCO2. Threshold pCO2 and CO3 values for individual substrate types showed considerable variation. The average pCO2 threshold value for all substrate types was 654±195 µatm and ranged from 467 to 1003 µatm. The average CO3 threshold value was 152±24 µmol/kg, ranging from 113 to 184 µmol/kg. Ambient seawater measurements of pCO2 and CO3 indicate that CO3 and pCO2 threshold values for all substrate types were both exceeded, simultaneously, 13% of the time at present day atmospheric pCO2 concentrations. It is predicted that atmospheric pCO2 will exceed the average pCO2 threshold value for calcification and dissolution on the Molokai reef flat by the year 2100.
Resumo:
The Clarion-Clipperton Fracture Zone (CCFZ) in the Pacific Ocean is characterized by organic carbon-starved sediments and meter-scale oxygen penetration into the sediment. Furthermore, numerous seamounts occur throughout its deep-sea plain, which may serve as conduits for low-temperature hydrothermal circulation of seawater through the oceanic crust. Recent studies in deep-sea environments of the Pacific and Atlantic Oceans have suggested and presented evidence of an exchange of dissolved constituents between the seawater flowing in the basaltic crust and the pore water of the overlying sediments. Through high-resolution pore-water oxygen and nutrient measurements, we examined fluxes and geochemical interactions between the seamount basaltic basement and pore waters of the overlying sediments at three sites located on a radial transect from the foot of Teddy Bare, a small seamount in the CCFZ. At three sites, located 1000, 700 and 400 m away from the foot of the seamount, we found that oxygen concentrations initially decrease with sediment depth but start to increase at depths of 3 and 7 m towards the basaltic basement. NO32- concentrations mirror the oxygen concentration profiles, as they increase with sediment depth but decrease towards the basement. We performed transport reaction modeling and determined at one site the 87Sr/86Sr ratio of the pore water and the bottom water overlying the sediments, which indicated that the 87Sr/86Sr ratio of the pore water at the bottom of the sediment column is similar to the seawater Transport-reaction modeling revealed that (1) the diffusive flux of oxygen from the basaltic basement outpaces the oxygen consumption through organic matter oxidation and nitrification in the basal sediments and (2) the nutrient exchange between the sediment and the underlying basaltic crust occurs at orders-of-magnitude lower rates than between the upper sediment and the overlying bottom water. Our results suggest an upward diffusion of oxygen from seawater circulating within the seamount crust into the overlying basal sediments. The oxygen profiles presented here represent the first of their kind ever measured in the Pacific Ocean, as they indicate an upward flux of molecular oxygen from a basaltic aquifer, something that has so far only been documented - at one other location worldwide - the North Pond site in the Atlantic Ocean. We show that the diffusion of oxygen from the seamount basaltic basement into the overlying pore waters affects the preservation of organic compounds and helps to maintain a completely oxygenated sedimentary column at all 3 sites near the seamount.