979 resultados para Aviation toxicology.
Resumo:
The effects of aquatic humic acids on the bioconcentration and acute toxicity of fenpropathrin were evaluated using grass carp, Ctenopharyngodan idellus, in laboratory freshwater systems. The results demonstrated that both bioavailability and acute toxicity decreased in the presence of aquatic humic acid 5 and 10 mg/liter. In addition, the extent of influence increased with increasing concentration of aquatic humic acid, (C) 1999 Academic Press.
Resumo:
Several biochemical responses were measured in silver crucian carp (Carassius auratus gibelio) after exposure to sediments obtained from contaminated Ya-Er Lake, No, 1 pond, and an unpolluted reference site, Honglian Lake. After 1 week of exposure, a significant induction of the phase I biotransformation enzyme (ethoxylresorufin-o-deethylase, EROD) was found (83-fold of control), whereas the phase II biotransformation enzyme (glutathione S-transferase, GST) exhibited a slight, but significant induction (1,4-fold of control) after 4 weeks of exposure. The level of cellular glutathione in the liver was also slightly elevated after 4 weeks of exposure. The delayed response of GST to the contaminants indicates that the phase I and phase II biotransformation enzymes are regulated differently in fish. The results suggest that EROD is a sensitive bioindicator to assess the toxicity of dioxin-contamined sediment in the laboratory, (C) 1998 Academic Press.
Resumo:
The effects of sublethal concentrations of phenol and cadmium on the phototactic responses of the stage II nauplii of the barnacle Balanus amphitrite were investigated. Increased toxicant concentrations caused a reduction in phototactic responses. Balanus amphitrite nauplii exposed to nominal phenol concentrations of 100 ppm and higher for 1-12 h failed to exhibit phototactic responses, while longer exposure times of 24 and 48 h reduced the lowest observable effect concentration (LOECs) to 80 and 60 ppm, respectively. For cadmium, the LOECs, based on nominal concentrations, for B. amphitrite following 1, 6, 12, 24, and 48 h exposures were 20, 4.5, 4.0, 1, and 0.75 ppm, respectively. The LOECs can be significantly reduced by increasing the duration of exposure to the toxicants. A good relationship exists between the phototactic response and toxicant concentration as well as exposure time. Results of this study indicate that the toxicant-induced reduction in phototactic responses of barnacle larvae can be used in a sensitive, rapid screening test for ecotoxicological assessments. (C) 1997 by John Wiley & Sons, Inc.
Resumo:
Toxic cyanobacteria (blue-green algae) waterblooms have been found in several Chinese water bodies since studies began there in 1984. Waterbloom samples for this study contained Anabaena circinalis, Microcystis aeruginosa and Oscillatoria sp. Only those waterblooms dominated by Microcystis aeruginosa were toxic by the intraperitoneal (i.p.) mouse bioassay. Signs of poisoning were the same as with known hepatotoxic cyclic peptide microcystins. One toxic fraction was isolated from each Microcystis aeruginosa sample. Two hepatotoxic peptides were purified from each of the fractions by high-performance liquid chromatography and identified by amino acid analysis followed by low and high resolution fast-atom bombardment mass spectrometry (FAB-MS). LD50 i.p. mouse values for the two toxins were 245-mu-g/kg (Toxin A) and 53-mu-g/g (Toxin B). Toxin content in the cells was 0.03 to 3.95 mg/g (Toxin A) and 0.18 to 3.33 mg/kg (Toxin B). The amino acid composition of Toxin A was alanine [1], arginine [2], glutamic acid [1] and beta-methylaspartic acid [1]; for Toxin B it was the same, except one of the arginines was replaced with a leucine. Low- and high-resolution FAB-MS showed that the molecular weights were 1,037 m/z (Toxin A) and 994 m/z (Toxin B), with formulas of C49H76O12N13 (Toxin A) and C49H75O12N10 (Toxin B). It was concluded that Toxin A is microcystin-RR and Toxin B is microcystin-LR, both known cyclic heptapeptide hepatotoxins isolated from cyanobacteria in other parts of the world. Sodium borohydride reduction of microcystin-RR yielded dihydro-microcystin-RR (m/z = 1,039), an important intermediate in the preparation of tritium-labeled toxin for metabolism and fate studies.