982 resultados para Au(111)
Resumo:
Search for low-spin signature inversion in the pi i(13/2) circle times nu i(13/2) bands in odd-odd Au-182,Au-184,Au-186 has been conducted through the standard in-beam gamma-spectroscopy techniques via the Sm-152(Cl-35,5n) Au-182, Yb-172(F-19,5n) (186)An, and Tb-159(Si-29,4n) (184)An reactions, respectively. The pi i(13/2) circle times nu i(13/2) bands in these three nuclei have been identified and extended up to high-spin states. In particular, the inter-band connection between the pi i(13/2) circle times nu i(13/2) band and the ground-state band in Au-184 has been established, leading to a firm spin-and-parity assignment for the pi i(13/2) circle times nu i(13/2) band. The low-spin signature inversion is found in the pi i(13/2) circle times nu i(13/2) bands according to our spin-assignment and-the signature crossing observed at high-spin states.
Resumo:
We report the electrochemical growth of gold nanowires with controlled dimensions and crystallinity. By systematically varying the deposition conditions, both polycrystalline and single-crystalline wires with diameters between 20 and 100 nm are successfully synthesized in etched ion-track membranes. The nanowires are characterized using scanning electron microscopy, high resolution transmission electron microscopy, scanning tunnelling microscopy and x-ray diffraction. The influence of the deposition parameters, especially those of the electrolyte, on the nanowire structure is investigated. Gold sulfite electrolytes lead to polycrystalline structure at the temperatures and voltages employed. In contrast, gold cyanide solution favours the growth of single crystals at temperatures between 50 and 65 degrees C under both direct current and reverse pulse current deposition conditions. The single-crystalline wires possess a [110] preferred orientation.
Resumo:
By use of optical spectrum technology, the spectra of X-ray induced by highly charged Ar-40(q+) ions interacting with Au surface have been studied. The results show that the argon K alpha X-ray were emitted from the hollow atoms formed below the surface. There is a process of multi-electron exciting in neutralization of the Ar16+ ion, with electronic configuration 1s(2) in its ground state below the solid surface. The yield of the projectile K alpha X-ray is related to its initial electronic configuration, and the yield of the target X-ray is related to the projectile kinetic energy.
Resumo:
Knowing that Fe is sensitive to swift heavy ion irradiations whereas Au and Al are not, the behavior of nanometric metallic multilayer systems, like [Fe(3 nm)/Au(x)](y) and [Fe(3 nm)/Al(x)](y) with x ranging between 1 and 10 mn, were studied within the inelastic thermal spike model. In addition to the usual cylindrical geometry of energy dissipation perpendicular to the ion projectile direction, the heat transport along the ion path was implemented in the electronic and atomic sub-systems. The simulations were performed using three different values of linear energy transfer corresponding to 3 MeV/u of Pb-208, Xe-132 and Kr-84 ions. For the Fe/Au system, evidence of appearance of a molten phase was found in the entire Au layer, provided the Au thickness is less than 7 nm and 3 nm for Pb and Xe ions, respectively. For the Fe/Al(x) system irradiated with Pb ions, the Al layers with a thickness less than 4 nm melt along the entire ion track. Surprisingly, the Fe layer does not melt if the Al thickness is larger than 2 nm, although the deposited energy surpasses the electronic stopping power threshold of track formation in Fe. For Kr ions melting does not occur in any of the multilayer systems.
Resumo:
High-spin level structure of Au-188 has been studied via the Yb-173(F-19, 4n gamma) reaction using techniques of in-beam gamma-ray spectroscopy. Based on the experimental results, the level scheme of 188Au has been revised significantly. The previously reported positive parity levels have been modified and a new 20(+) level was proposed to feed the 18(+) states via two low-energy transitions. The existence of the 20(+) and the level structures above it are similar to those in the neighboring odd-odd Au-190,Au-192, therefore, the pi h(11/12)(-1)circle times-vi(13/2)(-2)h(9/2)(-1) configuration was assigned to the 20(+) state.
Resumo:
The sputtered particle yields produced by Pbq+ (q=4-36) with constant kinetic energy bombardment on An surface were measured. The sputtering Could be separated to two parts: no potential sputtering is observed when q<24 (E-pot = 9.6 keV) and the sputtering yield increases with E-pot(1.2) for the higher charge states of q >= 24. The potential sputtering is mainly contributed by the relaxation of electronic excitations on target surface produced by the potential energy transfer from projectile to target atoms.
Resumo:
The high-spin level structure of Au-188 has been investigated via the Yb-173(F-19,4n gamma) reaction at beam energies of 86 and 90 MeV. The previously reported level scheme has been modified and extended significantly. A new I-pi = 20(+) state associated with pi h(11/2)(-1) circle times nu i(13/2)(-2)h(9/2)(-1) configuration and two new rotational bands, one of which is built on the pi h(9/2) circle times nu i(13/2) configuration, have been identified. The prolate-to-oblate shape transition through triaxial shape has been proposed to occur around Au-188 for the pi h(9/2) circle times nu i(13/2) bands in odd-odd Au isotopes. Evidence for pi h(11/2)(-1) circle times nu i(13/2)(-1) structure of nonaxial shape with gamma < -70 degrees has been obtained by comparison with total Routhian surface and cranked-shell-model calculations.
Resumo:
Yields, correlation shapes, and mean transverse momenta p(T) of charged particles associated with intermediate-to high-p(T) trigger particles (2.5 < p(T) < 10 GeV/c) in d + Au and Au + Au collisions at root s(NN) = 200 GeV are presented. For associated particles at higher p(T) greater than or similar to 2.5 GeV/c, narrow correlation peaks are seen in d + Au and Au + Au, indicating that the main production mechanism is jet fragmentation. At lower associated particle pT < 2 GeV/c, a large enhancement of the near- (Delta phi similar to 0) and away-side (Delta phi similar to pi) associated yields is found, together with a strong broadening of the away-side azimuthal distributions in Au + Au collisions compared to d + Au measurements, suggesting that other particle production mechanisms play a role. This is further supported by the observed significant softening of the away-side associated particle yield distribution at Delta phi similar to pi in central Au + Au collisions.
Resumo:
Balance functions have been measured for charged-particle pairs, identified charged-pion pairs, and identified charged-kaon pairs in Au + Au, d + Au, and p + p collisions at root s(NN) = 200 GeV at the Relativistic Heavy Ion Collider using the STAR detector. These balance functions are presented in terms of relative pseudorapidity, Delta eta, relative rapidity, Delta y, relative azimuthal angle, Delta phi, and invariant relative momentum, q(inv). For charged-particle pairs, the width of the balance function in terms of Delta eta scales smoothly with the number of participating nucleons, while HIJING and UrQMD model calculations show no dependence on centrality or system size. For charged-particle and charged-pion pairs, the balance functions widths in terms of Delta eta and Delta y are narrower in central Au + Au collisions than in peripheral collisions. The width for central collisions is consistent with thermal blast-wave models where the balancing charges are highly correlated in coordinate space at breakup. This strong correlation might be explained by either delayed hadronization or limited diffusion during the reaction. Furthermore, the narrowing trend is consistent with the lower kinetic temperatures inherent to more central collisions. In contrast, the width of the balance function for charged-kaon pairs in terms of Delta y shows little centrality dependence, which may signal a different production mechanism for kaons. The widths of the balance functions for charged pions and kaons in terms of q(inv) narrow in central collisions compared to peripheral collisions, which may be driven by the change in the kinetic temperature.
Resumo:
We report a measurement of high-p(T) inclusive pi(0), eta, and direct photon production in p + p and d + Au collisions at root s(NN) = 200 GeV at midrapidity (0 < eta < 1). Photons from the decay pi(0) -> gamma gamma were detected in the barrel electromagnetic calorimeter of the STAR experiment at the Relativistic Heavy Ion Collider. The eta -> gamma gamma decay was also observed and constituted the first eta measurement by STAR. The first direct photon cross-section measurement by STAR is also presented; the signal was extracted statistically by subtracting the pi(0), eta, and omega(782) decay background from the inclusive photon distribution observed in the calorimeter. The analysis is described in detail, and the results are found to be in good agreement with earlier measurements and with next-to-leading-order perturbative QCD calculations.
Resumo:
We present the first measurements of identified hadron production, azimuthal anisotropy, and pion interferometry from Au + Au collisions below the nominal injection energy at the BNL Relativistic Heavy-Ion Collider (RHIC) facility. The data were collected using the large acceptance solenoidal tracker at RHIC (STAR) detector at root s(NN) = 9.2 GeV from a test run of the collider in the year 2008. Midrapidity results on multiplicity density dN/dy in rapidity y, average transverse momentum < p(T)>, particle ratios, elliptic flow, and Hanbury-Brown-Twiss (HBT) radii are consistent with the corresponding results at similar root s(NN) from fixed-target experiments. Directed flow measurements are presented for both midrapidity and forward-rapidity regions. Furthermore the collision centrality dependence of identified particle dN/dy, < p(T)>, and particle ratios are discussed. These results also demonstrate that the capabilities of the STAR detector, although optimized for root s(NN) = 200 GeV, are suitable for the proposed QCD critical-point search and exploration of the QCD phase diagram at RHIC.
Resumo:
We present measurements of the charge balance function, from the charged particles, for diverse pseudorapidity and transverse momentum ranges in Au + Au collisions at root S-NN = 200 GeV using the STAR detector at RHIC. We observe that the balance function is boost-invariant within the pseudorapidity coverage vertical bar-1.3, 1.3 vertical bar. The balance function properly scaled by the width of the observed pseudorapidity window does not depend on the position or size of the pseudorapidity window. This scaling property also holds for particles in different transverse momentum ranges. In addition, we find that the width of the balance function decreases monotonically with increasing transverse momentum for all centrality classes. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
用47MeV/u12C离子轰击天然铋靶,通过炮弹和靶核之间的核子转移反应产生Au同位素。使用放射化学方法从大量Bi和复杂反应产物中分离、纯化Au,并制备Au的γ射线测量源。使用HPGe探测器测量放射性Au同位素的γ活性。根据照射结束时Au同位素的活度和其他相关数据,确定每个Au同位素的产生截面。分析发现,缺中子Au同位素的产生截面与Qgg值之间不遵从指数依赖关系,这可用重离子碰撞中的次级过程加以解释。
Resumo:
利用能量为164-180MeV的35Cl束流,通过重离子核反应149Sm(35Cl,5n) 研究了179Au的高自旋态能级结构。实验进行了γ射线的激发函数、X-γ和γ-γ-t符合测量。基于实验测量结果,首次建立了179Au的1/2[660](πi13/2)转动带。结合已有的实验数据,着重讨论了奇-A Au核中1/2[660](πi13/2) 转动带的形变和带头激发能随中子数的变化。用能量为140MeV的29Si束流轰击159Tb金属靶,布居了183Au核的高自旋态。实验中要求至少有3个高纯锗和2个BGO探测器同时点火,在此符合条件下,记录高纯锗探测器探测到的γ射线的能量和相对时间、BGO探测到的γ射线的总能量和多重性。通过对实验数据的分析,扩展并更新了183Au的能级纲图。首次建立了183Au的πi13/2转动带的能量非优先带。分析并讨论了缺中子奇-A Au中πh9/2转动带的能量非优先带和πf7/2转动带间的相互作用
Resumo:
本实验工作是在兰州重离子加速器国家实验室ECR离子源完成。实验采用能量为336keV的低能高电荷态Ar16+离子轰击Au、Mo金属靶,入射离子与靶表面之间的夹角分别是20°,25°,……,80°,入射角与出射角之和为90°。测量了不同角度下Mo的Lα、Lβ,Au的Mα和Ar的Kα特征X射线谱,对实验谱进行了高斯拟合,计算了不同入射角下的各条X射线的产额和产生截面,并将靶原子发射出的X射线截面与ECPSSR和带结合能修正的BEA理论计算的结果进行了比较。发现当入射角较小时,Ar16+与金属靶相互作用时所产生出的各条特征X射线截面随入射角的增加而增加,当入射角达到40°左右后X射线截面基本上保持不变。与ECPSSR计算值相比,本实验中Au的X射线截面比较接近,实验值比ECPSSR计算值小不到一个量级;而Mo的X射线截面实验值比ECPSSR计算值大3-4个量级,但产额与带结合能修正的BEA计算值很接近