1000 resultados para Atomic absorption spectrometry (AAS) (0.45 µm pore filtered)
Resumo:
Chemical analyzes show that interstitial waters from ore-bearing bottom sediments of the Atlantis II and Discovery Deeps are enriched in Fe, Mn, Cu, Ni, Co, Zn, Pb, and Cd compared to sea water. Enrichment factors of these trace elements in the interstitial waters of the Atlantis II Deep relative to the sea water vary within the following ranges: for Fe from 100 to 7000, for Mn from 19047 to 32738, for Zn from 500 to 1600, for Pb from 78333 to 190000, for Cu from 107 to 654. Comparison of average weighted concentrations of Fe, Mn, Zn, Pb, Cu, Ni in the bottom sediments and the interstitial waters of the Atlantis II Deep indicates common regularities and good relationship in distribution of these elements along sediment cores. Differences in concentrations and distribution of the studied trace elements in the interstitial waters of the Atlantis II and Discovery Deeps result from different chemical compositions of hydrothermal fluids entering these deeps.
Resumo:
Basal dolomitic sediments were recovered at three drill sites in the Tyrrhenian Sea during Ocean Drilling Program (ODP) Leg 107 (Sites 650, 651, and 655). These sediments overlie the basaltic basement complex and are enriched in iron, and in some instances, also in manganese. The manganese enrichments, together with a very slight enrichment in trace transition elements, strongly suggest that the basal sediments have an affinity to deep-sea metalliferous deposits of hydrothermal origin. At Sites 651 and 655, the dolostones contain variable amounts of authigenic palygorskite, a Mgrich clay mineral. At Site 651, the basal sediments are 40 m thick and contain nonstoichiometric dolomite, sometimes Ca rich, but primarily Mg rich. The occurrence of Mg-rich dolomite with excess Mg up to 4% is unusual for the deep-sea environment; it may be associated with a hydrothermally driven flux of altered sea water through the directly underlying basement complex, which comprises basalt, dolerite, and serpentinized peridotite. Low-temperature alteration of the basement complex could produce solutions enriched in Mg. Oxygen-isotope equilibrium temperatures indicate that all of the studied dolomites formed under low-temperature conditions (i.e., < 70?C). The carbon-isotope compositions, together with the strong isotopic covariance, suggest that the Mg-rich dolomite precipitated more rapidly than the Carich dolomite. We suggest that the low-temperature, hydrothermal convection of Mg-rich solutions through the basal sediments in this back-arc basin environment (1) overcame kinetic problems related to the formation of massive dolostones, and (2) provided a mass-transport mechanism for dolomitization.
Resumo:
Data on internal structure, distribution, and chemical composition of iron-manganese nodules from the central part of the South Pacific are reported. Nodules with relatively high contents of Fe, Ti, Co, and Pb were found. Formation of these nodules in pelagic regions of the ocean with low sedimentation rates is tentatively ascribed by the authors to leaching of Fe, Mn, and some minor elements during submarine lava outflow and to geochemical mobility of these elements. The role of diagenetic re-distribution of ore elements during formation of nodules is also discussed.
Resumo:
Experimental data obtained show that oceanic and marine ferromanganese nodules and crusts are natural ion-exchangers. Exchange capacity of oceanic ferromanganese aggregates is much higher than that of shallow-water marine ones, whereas reactivities of exchange cations (Na, K, Ca, and Mg) are almost equal in both.
Resumo:
Light greenish gray and pale purple color bands are common in the ooze and chalk of the Ontong Java Plateau. Analyses of Pleistocene and Pliocene ooze samples that contain abundant bands indicate that the purple bands are colored by finely disseminated iron sulfide, whereas the green bands are colored by finely disseminated Fe- and Al-bearing silicates (probably clays). No local contrasts in the total organic carbon contents, carbon and oxygen isotopic compositions, and grain sizes were found. Band abundances, counted from core photographs of all Leg 130 holes, can be correlated from hole to hole on the basis of age rather than depth. The temporal distribution of these color bands is also comparable with that of the green bands described from the Lord Howe Rise, which were previously interpreted as products of altered volcanic glass. This may indicate that the green and purple bands on the Ontong Java Plateau originate from the early alteration of volcanic ash. The crosscutting relationships between the green and purple bands and original structures in the host sediment indicate that the bands have been locally altered by redox conditions in the sediments after the bands were formed.
Resumo:
Calcareous and siliceous biogenic components have been studied in deep-water iron-manganese nodules from the northern and southern Pacific Ocean. Calcareous material consists of foraminifera remains, calcareous algae, and coccolithophorids, whereas siliceous material consists of remains of radiolarians and diatoms, as well as sponge spicules. Structures similar in morphology to coccal and filiform bacteria have been found in both outer and inner sections of the nodules indicating that microorganisms may be directly or indirectly involved in their development.
Resumo:
Geochemical (atomic absorption, neutron activation analyses), mineralogical (microprobe), and radiometric (40K - 40Ar) data are presented for five basalts from the Guatemala Trench area (Deep Sea Drilling Project, Leg 84). Strong geochemical and mineralogical differences distinguish two types among these basalts: (1) One basalt (Sample 567A-19,CC), recovered below Upper Cretaceous limestone has the following characteristics: it is quartz normative and has low TiO2, content, as well as low amounts of Cr, Ni and other transition metals, an LREE depleted pattern, and affinities of clinopyroxene phenocryst plotted into the field of tholeiitic and calc-alkalic pyroxenes. (2) Four alkaline basalts, recovered from the mafic and ultramafic acoustic basement, are nepheline normative and show high TiO2 content, high amounts of Cr, Ni and so on, an LREE enriched pattern and compositions of clinopyroxene phenocryst plotted close to or within the field of alkali basalt pyroxenes. These basalts are comparable to those recognized in the lower part of the Santa Elena complex and are clearly different from the oceanic basalts of the Cocos Plate. The radiometric age of the orogenic basalt seems to be close to 80 Ma. The alkaline basalts are clearly older, even if a discrepancy appears between the results of different analyses because of the secondary effects of alteration.
Resumo:
Chemical analyses of North Atlantic D.S.D.P. (Deep Sea Drilling Project) sediments indicate that basal sediments generally contain higher concentrations of Fe, Mn, Mg, Pb, and Ni, and similar or lower concentrations of Ti, Al, Cr, Cu, Zn, and Li than the material overlying them. Partition studies on selected samples indicate that the enriched metals in the basal sediments are usually held in a fashion similar to that in basal sediments from the Pacific, other D.S.D.P. sediments, and modern North Atlantic ridge and non-ridge material. Although, on average, chemical differences between basal sediments of varying ages are apparent, normalization of the data indicates that the processes leading to metal enrichment on the crest of the Mid-Atlantic Ridge appear to have been approximately constant in intensity since Cretaceous times. In addition, the bulk composition of detrital sediments also appears to have been relatively constant over the same time period. Paleocene sediments from site 118 are, however, an exception to this rule, there apparently having been an increased detrital influx during this period. The bulk geochemistry, partitioning patterns, and mineralogy of sediments from D.S.D.P. 9A indicates that post-depositional migration of such elements as Mn, Ni, Cu, Zn, and Pb may have occurred. The basement encountered at the base of site 138 is thought to be a basaltic sill, but the overlying basal sediments are geochemically similar to other metalliferous basal sediments from the North Atlantic. These results, as well as those from site 114 where true oceanic basement was encountered, but where there was an estimated 7 m.y. hiatus between basaltic extrusion and basal sediment deposition, indicate that ridge-crest sediments are not necessarily deposited during active volcanism but can be formed after the volcanism has ceased. The predominant processes for metal enrichment in these deposits and those formed in association with other submarine volcanic features is a combination of shallow hydrothermal activity, submarine weathering of basalt, and the formation of ferromanganese oxides which can scavenge metals from seawater. In addition, it seems as though the formation of submarine metalliferous sediments is not restricted to active-ridge areas.
Resumo:
The monograph summarizes materials on geology and deep structure of the Central Atlantic fracture zones. These materials have been obtained during eight expeditions of R/V ''Akademik Nikolaj Strakhov''. The studies have been based on the integrated geological approach. As a result, many new tectonic, magmatic, metallogenic and historical-geological features of these phenomenal structures of the deep ocean have been revealed.