996 resultados para Atmospheric sciences
Resumo:
The question of linear sheared-disturbance evolution in constant-shear parallel flow is here reexamined with regard to the temporary-amplification phenomenon noted first by Orr in 1907. The results apply directly to Rossby waves on a beta-plane, and are also relevant to the Eady model of baroclinic instability. It is shown that an isotropic initial distribution of standing waves maintains a constant energy level throughout the shearing process, the amplification of some waves being precisely balanced by the decay of the others. An expression is obtained for the energy of a distribution of disturbances whose wavevectors lie within a given angular wedge and an upper bound derived. It is concluded that the case for ubiquitous amplification made in recent studies may have been somewhat overstated: while carefully-chosen individual Fourier components can amplify considerably before they decay. a general distribution will tend to exhibit little or no amplification.
Resumo:
Global FGGE data are used to investigate several aspects of large-scale turbulence in the atmosphere. The approach follows that for two-dimensional, nondivergent turbulent flows which are homogeneous and isotropic on the sphere. Spectra of kinetic energy, enstrophy and available potential energy are obtained for both the stationary and transient parts of the flow. Nonlinear interaction terms and fluxes of energy and enstrophy through wavenumber space are calculated and compared with the theory. A possible method of parameterizing the interactions with unresolved scales is considered. Two rather different flow regimes are found in wavenumber space. The high-wavenumber regime is dominated by the transient components of the flow and exhibits, at least approximately, several of the conditions characterizing homogeneous and isotropic turbulence. This region of wavenumber space also displays some of the features of an enstrophy-cascading inertial subrange. The low-wavenumber region, on the other hand, is dominated by the stationary component of the flow, exhibits marked anisotropy and, in contrast to the high-wavenumber regime, displays a marked change between January and July.
Resumo:
The effect of stratospheric radiative damping time scales on stratospheric variability and on stratosphere–troposphere coupling is investigated in a simplified global circulation model by modifying the vertical profile of radiative damping in the stratosphere while holding it fixed in the troposphere. Perpetual-January conditions are imposed, with sinusoidal topography of zonal wavenumber 1 or 2. The depth and duration of the simulated sudden stratospheric warmings closely track the lower-stratospheric radiative time scales. Simulations with the most realistic profiles of radiative damping exhibit extended time-scale recoveries analogous to polar-night jet oscillation (PJO) events, which are observed to follow sufficiently deep stratospheric warmings. These events are characterized by weak lower-stratospheric winds and enhanced stability near the tropopause, which persist for up to 3 months following the initial warming. They are obtained with both wave-1 and wave-2 topography. Planetary-scale Eliassen–Palm (EP) fluxes entering the vortex are also suppressed, which is in agreement with observed PJO events. Consistent with previous studies, the tropospheric jets shift equatorward in response to the warmings. The duration of the shift is closely correlated with the period of enhanced stability. The magnitude of the shift in these runs, however, is sensitive only to the zonal wavenumber of the topography. Although the shift is sustained primarily by synoptic-scale eddies, the net effect of the topographic form drag and the planetary-scale fluxes is not negligible; they damp the surface wind response but enhance the vertical shear. The tropospheric response may also reduce the generation of planetary waves, further extending the stratospheric dynamical time scales.
Resumo:
A version of the Canadian Middle Atmosphere Model (CMAM) that is nudged toward reanalysis data up to 1 hPa is used to examine the impacts of parameterized orographic and non-orographic gravity wave drag (OGWD and NGWD) on the zonal-mean circulation of the mesosphere during the extended northern winters of 2006 and 2009 when there were two large stratospheric sudden warmings. The simulations are compared to Aura Microwave Limb Sounder (MLS) observations of mesospheric temperature, carbon monoxide (CO) and derived zonal winds. The control simulation, which uses both OGWD and NGWD, is shown to be in good agreement with MLS. The impacts of OGWD and NGWD are assessed using simulations in which those sources of wave drag are removed. In the absence of OGWD the mesospheric zonal winds in the months preceding the warmings are too strong, causing increased mesospheric NGWD, which drives excessive downwelling, resulting in overly large lower mesospheric values of CO prior to the warming. NGWD is found to be most important following the warmings when the underlying westerlies are too weak to allow much vertical propagation of the orographic gravity waves to the mesosphere. NGWD is primarily responsible for driving the circulation that results in the descent of CO from the thermosphere following the warmings. Zonal mean mesospheric winds and temperatures in all simulations are shown to be strongly constrained by (i.e. slaved to) the stratosphere. Finally, it is demonstrated that the responses to OGWD and NGWD are non-additive due to their dependence and influence on the background winds and temperatures.
Resumo:
The concept of slow vortical dynamics and its role in theoretical understanding is central to geophysical fluid dynamics. It leads, for example, to “potential vorticity thinking” (Hoskins et al. 1985). Mathematically, one imagines an invariant manifold within the phase space of solutions, called the slow manifold (Leith 1980; Lorenz 1980), to which the dynamics are constrained. Whether this slow manifold truly exists has been a major subject of inquiry over the past 20 years. It has become clear that an exact slow manifold is an exceptional case, restricted to steady or perhaps temporally periodic flows (Warn 1997). Thus the concept of a “fuzzy slow manifold” (Warn and Ménard 1986) has been suggested. The idea is that nearly slow dynamics will occur in a stochastic layer about the putative slow manifold. The natural question then is, how thick is this layer? In a recent paper, Ford et al. (2000) argue that Lighthill emission—the spontaneous emission of freely propagating acoustic waves by unsteady vortical flows—is applicable to the problem of balance, with the Mach number Ma replaced by the Froude number F, and that it is a fundamental mechanism for this fuzziness. They consider the rotating shallow-water equations and find emission of inertia–gravity waves at O(F2). This is rather surprising at first sight, because several studies of balanced dynamics with the rotating shallow-water equations have gone beyond second order in F, and found only an exponentially small unbalanced component (Warn and Ménard 1986; Lorenz and Krishnamurthy 1987; Bokhove and Shepherd 1996; Wirosoetisno and Shepherd 2000). We have no technical objection to the analysis of Ford et al. (2000), but wish to point out that it depends crucially on R 1, where R is the Rossby number. This condition requires the ratio of the characteristic length scale of the flow L to the Rossby deformation radius LR to go to zero in the limit F → 0. This is the low Froude number scaling of Charney (1963), which, while originally designed for the Tropics, has been argued to be also relevant to mesoscale dynamics (Riley et al. 1981). If L/LR is fixed, however, then F → 0 implies R → 0, which is the standard quasigeostrophic scaling of Charney (1948; see, e.g., Pedlosky 1987). In this limit there is reason to expect the fuzziness of the slow manifold to be “exponentially thin,” and balance to be much more accurate than is consistent with (algebraic) Lighthill emission.
Resumo:
The Walker circulation is one of the major components of the large-scale tropical atmospheric circulation and variations in its strength are critical to equatorial Pacific Ocean circulation. It has been argued in the literature that during the 20th century the Walker circulation weakened, and that this weakening was attributable to anthropogenic climate change. By using updated observations, we show that there has been a rapid interdecadal enhancement of the Walker circulation since the late 1990s. Associated with this enhancement is enhanced precipitation in the tropical western Pacific, anomalous westerlies in the upper troposphere, descent in the central and eastern tropical Pacific, and anomalous surface easterlies in the western and central tropical Pacific. The characteristics of associated oceanic changes are a strengthened thermocline slope and an enhanced zonal SST gradient across the tropical Pacific. Many characteristics of these changes are similar to those associated with the mid-1970s climate shift with an opposite sign. We also show that the interdecadal variability of the Walker circulation in the tropical Pacific is inversely correlated to the interdecadal variability of the zonal circulation in the tropical Atlantic. An enhancement of the Walker circulation in the tropical Pacific is associated with a weakening zonal circulation in the tropical Atlantic and vise versa, implying an inter-Atlantic-Pacific connection of the zonal overturning circulation variation. Whether these recent changes will be sustained is not yet clear, but our research highlights the importance of understanding the interdecadal variability, as well as the long-term trends, that influence tropical circulation.
Resumo:
The impact of El Nino–Southern Oscillation (ENSO) on atmospheric Kelvin waves and associated tropical convection is investigated using the ECMWF Re-Analysis, NOAA outgoing longwave radiation (OLR), and the analysis technique introduced in a previous study. It is found that the phase of ENSO has a substantial impact on Kelvin waves and associated convection over the equatorial central-eastern Pacific. El Nino (La Nina) events enhance (suppress) variability of the upper-tropospheric Kelvin wave and the associated convection there, both in extended boreal winter and summer. The mechanism of the impact is through changes in the ENSO-related thermal conditions and the ambient flow. In El Nino years, because of SST increase in the equatorial central-eastern Pacific, variability of eastward-moving convection, which is mainly associated with Kelvin waves, intensifies in the region. In addition, owing to the weakening of the equatorial eastern Pacific westerly duct in the upper troposphere in El Nino years, Kelvin waves amplify there. In La Nina years, the opposite occurs. However, the stronger westerly duct in La Nina winters allows more NH extratropical Rossby wave activity to propagate equatorward and force Kelvin waves around 200 hPa, partially offsetting the in situ weakening effect of the stronger westerlies on the waves. In general, in El Nino years Kelvin waves are more convectively and vertically coupled and propagate more upward into the lower stratosphere over the central-eastern Pacific. The ENSO impact in other regions is not clear, although in winter over the eastern Indian and western Pacific Oceans Kelvin waves and their associated convection are slightly weaker in El Nino than in La Nina years.
Resumo:
This document outlines a practical strategy for achieving an observationally based quantification of direct climate forcing by anthropogenic aerosols. The strategy involves a four-step program for shifting the current assumption-laden estimates to an increasingly empirical basis using satellite observations coordinated with suborbital remote and in situ measurements and with chemical transport models. Conceptually, the problem is framed as a need for complete global mapping of four parameters: clear-sky aerosol optical depth δ, radiative efficiency per unit optical depth E, fine-mode fraction of optical depth ff, and the anthropogenic fraction of the fine mode faf. The first three parameters can be retrieved from satellites, but correlative, suborbital measurements are required for quantifying the aerosol properties that control E, for validating the retrieval of ff, and for partitioning fine-mode δ between natural and anthropogenic components. The satellite focus is on the “A-Train,” a constellation of six spacecraft that will fly in formation from about 2005 to 2008. Key satellite instruments for this report are the Moderate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) radiometers on Aqua, the Ozone Monitoring Instrument (OMI) radiometer on Aura, the Polarization and Directionality of Earth's Reflectances (POLDER) polarimeter on the Polarization and Anistropy of Reflectances for Atmospheric Sciences Coupled with Observations from a Lidar (PARASOL), and the Cloud and Aerosol Lider with Orthogonal Polarization (CALIOP) lidar on the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). This strategy is offered as an initial framework—subject to improvement over time—for scientists around the world to participate in the A-Train opportunity. It is a specific implementation of the Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON) program, presented earlier in this journal, which identified the integration of diverse data as the central challenge to progress in quantifying global-scale aerosol effects. By designing a strategy around this need for integration, we develop recommendations for both satellite data interpretation and correlative suborbital activities that represent, in many respects, departures from current practice
Resumo:
The use of ageostrophic flow to infer the presence of vertical circulations in the entrances and exits of the climatological jet streams is questioned. Problems of interpretation arise because of the use of different definitions of geostrophy in theoretical studies and in analyses of atmospheric data. The nature and role of the ageostrophic flow based on constant and variable Coriolis parameter definitions of geostrophy vary. In the latter the geostrophic divergence cannot be neglected, so the vertical motion is not associated solely with the ageostrophic flow. Evidence is presented suggesting that ageostrophic flow in the climatological jet streams is primarily determined by the kinematic requirements of wave retrogression rather than by a forcing process. These requirements are largely met by the rotational flow, with the divergent circulations present being geostrophically forced, and so playing a secondary, restoring role.
Resumo:
Using an asymptotic expansion, a balance model is derived for the shallow-water equations (SWE) on the equatorial beta-plane that is valid for planetary-scale equatorial dynamics and includes Kelvin waves. In contrast to many theories of tropical dynamics, neither a strict balance between diabatic heating and vertical motion nor a small Froude number is required. Instead, the expansion is based on the smallness of the ratio of meridional to zonal length scales, which can also be interpreted as a separation in time scale. The leading-order model is characterized by a semigeostrophic balance between the zonal wind and meridional pressure gradient, while the meridional wind v vanishes; the model is thus asymptotically nondivergent, and the nonzero correction to v can be found at the next order. Importantly for applications, the diagnostic balance relations are linear for winds when inferring the wind field from mass observations and the winds can be diagnosed without direct observations of diabatic heating. The accuracy of the model is investigated through a set of numerical examples. These examples show that the diagnostic balance relations can remain valid even when the dynamics do not, and the balance dynamics can capture the slow behavior of a rapidly varying solution.
Resumo:
Numerical experiments are described that pertain to the climate of a coupled atmosphere–ocean–ice system in the absence of land, driven by modern-day orbital and CO2 forcing. Millennial time-scale simulations yield a mean state in which ice caps reach down to 55° of latitude and both the atmosphere and ocean comprise eastward- and westward-flowing zonal jets, whose structure is set by their respective baroclinic instabilities. Despite the zonality of the ocean, it is remarkably efficient at transporting heat meridionally through the agency of Ekman transport and eddy-driven subduction. Indeed the partition of heat transport between the atmosphere and ocean is much the same as the present climate, with the ocean dominating in the Tropics and the atmosphere in the mid–high latitudes. Variability of the system is dominated by the coupling of annular modes in the atmosphere and ocean. Stochastic variability inherent to the atmospheric jets drives variability in the ocean. Zonal flows in the ocean exhibit decadal variability, which, remarkably, feeds back to the atmosphere, coloring the spectrum of annular variability. A simple stochastic model can capture the essence of the process. Finally, it is briefly reviewed how the aquaplanet can provide information about the processes that set the partition of heat transport and the climate of Earth.
Resumo:
The North Atlantic eddy-driven jet exhibits latitudinal variability, with evidence of three preferred latitudinal locations: south, middle and north. Here we examine the drivers of this variability and the variability of the associated storm track. We investigate the changes in the storm track characteristics for the three jet locations, and propose a mechanism by which enhanced storm track activity, as measured by upstream heat flux, is responsible for cyclical downstream latitudinal shifts in the jet. This mechanism is based on a nonlinear oscillator relationship between the enhanced meridional temperature gradient (and thus baroclinicity) and the meridional high-frequency (periods of shorter than 10 days) eddy heat flux. Such oscillations in baroclinicity and heat flux induce variability in eddy anisotropy which is associated with the changes in the dominant type of wave breaking and a different latitudinal deflection of the jet. Our results suggest that high heat flux is conducive to a northward deflection of the jet, whereas low heat flux is conducive to a more zonal jet. This jet deflecting effect was found to operate most prominently downstream of the storm track maximum, while the storm track and the jet remain anchored at a fixed latitudinal location at the beginning of the storm track. These cyclical changes in storm track characteristics can be viewed as different stages of the storm track’s spatio-temporal lifecycle.
Resumo:
Numerical simulations are performed to assess the influence of the large-scale circulation on the transition from suppressed to active convection. As a model tool, we used a coupled-column model. It consists of two cloud-resolving models which are fully coupled via a large-scale circulation which is derived from the requirement that the instantaneous domain-mean potential temperature profiles of the two columns remain close to each other. This is known as the weak-temperature gradient approach. The simulations of the transition are initialized from coupled-column simulations over non-uniform surface forcing and the transition is forced within the dry column by changing the local and/or remote surface forcings to uniform surface forcing across the columns. As the strength of the circulation is reduced to zero, moisture is recharged into the dry column and a transition to active convection occurs once the column is sufficiently moistened to sustain deep convection. Direct effects of changing surface forcing occur over the first few days only. Afterward, it is the evolution of the large-scale circulation which systematically modulates the transition. Its contributions are approximately equally divided between the heating and moistening effects. A transition time is defined to summarize the evolution from suppressed to active convection. It is the time when the rain rate within the dry column is halfway to the mean value obtained at equilibrium over uniform surface forcing. The transition time is around twice as long for a transition that is forced remotely compared to a transition that is forced locally. Simulations in which both local and remote surface forcings are changed produce intermediate transition times.