985 resultados para Asphalt Permeability
Resumo:
Inflammatory mediators induce neuropeptide release from nociceptive nerve endings and cell bodies, causing increased local blood flow and vascular leakage resulting in edema. Neuropeptide release from sensory neurons depends on an increase in intracellular Ca2+ concentration. In this study we investigated the role of two types of pH sensors in acid-induced Ca2+ entry and neuropeptide release from dorsal root ganglion (DRG) neurons. The transient receptor potential vanilloid 1 channel (TRPV1) and acid-sensing ion channels (ASICs) are both H+-activated ion channels present in these neurons, and are therefore potential pH sensors for this process. We demonstrate with in situ hybridization and immunocytochemistry that TRPV1 and several ASIC subunits are co-expressed with neuropeptides in DRG neurons. Activation of ASICs and of TRPV1 led to an increase in intracellular Ca2+ concentration. While TRPV1 has a high Ca2+ permeability and allows direct Ca2+ entry when activated, we show here that ASICs of DRG neurons mediate Ca2+ entry mostly by depolarization-induced activation of voltage-gated Ca2+ channels and only to a small extent via the pore of Ca2+-permeable ASICs. Extracellular acidification led to release of the neuropeptide calcitonin gene-related peptide from DRG neurons. The pH dependence and the pharmacological profile indicated that TRPV1, but not ASICs, induced neuropeptide secretion. In conclusion, this study shows that although both TRPV1 and ASICs mediate Ca2+ influx, TRPV1 is the principal sensor for acid-induced neuropeptide secretion from sensory neurons.
Resumo:
BACKGROUND Cerebral oedema is associated with significant neurological damage in patients with traumatic brain injury. Bradykinin is an inflammatory mediator that may contribute to cerebral oedema by increasing the permeability of the blood-brain barrier. We evaluated the safety and effectiveness of the non-peptide bradykinin B2 receptor antagonist Anatibant in the treatment of patients with traumatic brain injury. During the course of the trial, funding was withdrawn by the sponsor. METHODS Adults with traumatic brain injury and a Glasgow Coma Scale score of 12 or less, who had a CT scan showing an intracranial abnormality consistent with trauma, and were within eight hours of their injury were randomly allocated to low, medium or high dose Anatibant or to placebo. Outcomes were Serious Adverse Events (SAE), mortality 15 days following injury and in-hospital morbidity assessed by the Glasgow Coma Scale (GCS), the Disability Rating Scale (DRS) and a modified version of the Oxford Handicap Scale (HIREOS). RESULTS 228 patients out of a planned sample size of 400 patients were randomised. The risk of experiencing one or more SAEs was 26.4% (43/163) in the combined Anatibant treated group, compared to 19.3% (11/57) in the placebo group (relative risk = 1.37; 95% CI 0.76 to 2.46). All cause mortality in the Anatibant treated group was 19% and in the placebo group 15.8% (relative risk 1.20, 95% CI 0.61 to 2.36). The mean GCS at discharge was 12.48 in the Anatibant treated group and 13.0 in the placebo group. Mean DRS was 11.18 Anatibant versus 9.73 placebo, and mean HIREOS was 3.94 Anatibant versus 3.54 placebo. The differences between the mean levels for GCS, DRS and HIREOS in the Anatibant and placebo groups, when adjusted for baseline GCS, showed a non-significant trend for worse outcomes in all three measures. CONCLUSION This trial did not reach the planned sample size of 400 patients and consequently, the study power to detect an increase in the risk of serious adverse events was reduced. This trial provides no reliable evidence of benefit or harm and a larger trial would be needed to establish safety and effectiveness. TRIAL REGISTRATION This study is registered as an International Standard Randomised Controlled Trial, number ISRCTN23625128.
Resumo:
BACKGROUND: The Contegra® is a conduit made from the bovine jugular vein and then interposed between the right ventricle and the pulmonary artery. It is used for cardiac malformations in the reconstruction of right ventricular outflow tract. OBJECTIVE: To describe both normal and pathological appearances of the Contegra® in radiological imaging, to describe imaging of complications and to define the role of CT and MRI in postoperative follow-up. MATERIALS AND METHODS: Forty-three examinations of 24 patients (17 boys and 7 girls; mean age: 10.8 years old) with Contegra® conduits were reviewed. Anatomical description and measurements of the conduits were performed. Pathological items examined included stenosis, dilatation, plicature or twist, thrombus or vegetations, calcifications and valvular regurgitation. Findings were correlated to the echographic gradient through the conduit when available. RESULTS: CT and MR work-up showed Contegra® stenosis (n = 12), dilatation (n = 9) and plicature or twist (n = 7). CT displayed thrombus or vegetations in the Contegra® in three clinically infected patients. Calcifications of the conduit were present at CT in 12 patients and valvular regurgitation in three patients. The comparison between CT and/or MR results showed a good correlation between the echographic gradient and the presence of stenosis in the Contegra®. CONCLUSION: CT and MR bring additional information about permeability and postoperative anatomy especially when echocardiography is inconclusive. Both techniques depict the normal appearance of the conduit, and allow comparison and precise evaluation of changes in the postoperative follow-up.
Resumo:
Aquaporins (AQPs) are membrane channels that conduct water and small solutes such as glycerol and are involved in many physiological functions. Aquaporin-based modulator drugs are predicted to be of broad potential utility in the treatment of several diseases. Until today few AQP inhibitors have been described as suitable candidates for clinical development. Here we report on the potent inhibition of AQP3 channels by gold(III) complexes screened on human red blood cells (hRBC) and AQP3-transfected PC12 cells by a stopped-flow method. Among the various metal compounds tested, Auphen is the most active on AQP3 (IC(50) = 0.8±0.08 µM in hRBC). Interestingly, the compound poorly affects the water permeability of AQP1. The mechanism of gold inhibition is related to the ability of Au(III) to interact with sulphydryls groups of proteins such as the thiolates of cysteine residues. Additional DFT and modeling studies on possible gold compound/AQP adducts provide a tentative description of the system at a molecular level. The mapping of the periplasmic surface of an homology model of human AQP3 evidenced the thiol group of Cys40 as a likely candidate for binding to gold(III) complexes. Moreover, the investigation of non-covalent binding of Au complexes by docking approaches revealed their preferential binding to AQP3 with respect to AQP1. The high selectivity and low concentration dependent inhibitory effect of Auphen (in the nanomolar range) together with its high water solubility makes the compound a suitable drug lead for future in vivo studies. These results may present novel metal-based scaffolds for AQP drug development.
Resumo:
BACKGROUND A recent study using a rat model found significant differences at the time of diabetes onset in the bacterial communities responsible for type 1 diabetes modulation. We hypothesized that type 1 diabetes in humans could also be linked to a specific gut microbiota. Our aim was to quantify and evaluate the difference in the composition of gut microbiota between children with type 1 diabetes and healthy children and to determine the possible relationship of the gut microbiota of children with type 1 diabetes with the glycemic level. METHODS A case-control study was carried out with 16 children with type 1 diabetes and 16 healthy children. The fecal bacteria composition was investigated by polymerase chain reaction-denaturing gradient gel electrophoresis and real-time quantitative polymerase chain reaction. RESULTS The mean similarity index was 47.39% for the healthy children and 37.56% for the children with diabetes, whereas the intergroup similarity index was 26.69%. In the children with diabetes, the bacterial number of Actinobacteria and Firmicutes, and the Firmicutes to Bacteroidetes ratio were all significantly decreased, with the quantity of Bacteroidetes significantly increased with respect to healthy children. At the genus level, we found a significant increase in the number of Clostridium, Bacteroides and Veillonella and a significant decrease in the number of Lactobacillus, Bifidobacterium, Blautia coccoides/Eubacterium rectale group and Prevotella in the children with diabetes. We also found that the number of Bifidobacterium and Lactobacillus, and the Firmicutes to Bacteroidetes ratio correlated negatively and significantly with the plasma glucose level while the quantity of Clostridium correlated positively and significantly with the plasma glucose level in the diabetes group. CONCLUSIONS This is the first study showing that type 1 diabetes is associated with compositional changes in gut microbiota. The significant differences in the number of Bifidobacterium, Lactobacillus and Clostridium and in the Firmicutes to Bacteroidetes ratio observed between the two groups could be related to the glycemic level in the group with diabetes. Moreover, the quantity of bacteria essential to maintain gut integrity was significantly lower in the children with diabetes than the healthy children. These findings could be useful for developing strategies to control the development of type 1 diabetes by modifying the gut microbiota.
Resumo:
Leishmaniasis is a neglected tropical disease. According to the World Health Organization, there are approximately 1.5-two million new cases of cutaneous leishmaniasis each year worldwide. Chemotherapy against leishmaniasis is based on pentavalent antimonials, which were developed more than a century ago. The goals of this study were to investigate the antileishmanial activity of diterpene acids in copaiba oil, as well as some possible targets of their action against Leishmania amazonensis. Methyl copalate and agathic, hydroxycopalic, kaurenoic, pinifolic and polyaltic acids isolated from Copaifera officinales oleoresins were utilised. Ultrastructural changes and the specific organelle targets of diterpenes were investigated with electron microscopy and flow cytometry, respectively. All compounds had some level of activity against L. amazonensis. Hydroxycopalic acid and methyl copalate demonstrated the most activity against promastigotes and had 50% inhibitory concentration (IC50) values of 2.5 and 6.0 µg/mL, respectively. However, pinifolic and kaurenoic acid demonstrated the most activity against axenic amastigote and had IC50 values of 3.5 and 4.0 µg/mL, respectively. Agathic, kaurenoic and pinifolic acid caused significant increases in plasma membrane permeability and mitochondrial membrane depolarisation of the protozoan. In conclusion, copaiba oil and its diterpene acids should be explored for the development of new antileishmanial drugs.
Resumo:
BACKGROUND: Intravenous recombinant tissular plasminogen activator (rt-PA) is the only approved pharmacological treatment for acute ischaemic stroke. The authors aimed to analyse potential causes of the variable effect on early course and late outcome. METHODS AND RESULTS: 136 patients (42% women, 58% men) treated with intravenous rt-PA within 3 h of stroke onset in an acute stroke unit over a 3-year period, were included. Early clinical profiles of evolution at 48 h were divided into clinical improvement (CI) (decrease >4 points in the National Institute of Health Stroke Scale (NIHSS)); clinical worsening (CW) (increase >4 points NIHSS); clinical worsening after initial improvement (CWFI) (variations of >4 points in the NIHSS). Patients with clinical stability (no NIHSS modification or <4 points) were excluded. The patients showed in 66.9% CI, 13.2% CW 8.1 % CWFI and 11.8% remained stable. Female sex, no hyperlipaemia and peripheral arterial disease were associated with CW. Male sex and smoking were associated with CI. Absence of arterial occlusion on admission (28.4%) and arterial recanalisation at 24 h were associated with CI. Main causes of clinical deterioration included symptomatic intracranial haemorrhage (sICH), persistent occlusion and cerebral oedema. 23.5% developed ICH, 6.6% of which had sICH. At 3 months, 15.5% had died. Mortality was increased in CW, mainly related to sICH and cerebral oedema. The outcome of CWFI was intermediate between CW and CI. CONCLUSIONS: Early clinical profiles of evolution in thrombolysed patients vary considerably. Even with CI, it is critical to maintain vessel permeability to avoid subsequent CW.
Resumo:
ABSTRACT: The execution of the apoptotic death program in metazoans is characterized by a sequence of morphological and biochemical changes that include cell shrinkage, presentation of phosphatidylserine at the cell surface, mitochondrial alterations, chromatin condensation, nuclear fragmentation, membrane blebbing and the formation of apoptotic bodies. Methodologies for measuring apoptosis are based on these markers. Except for membrane blebbing and formation of apoptotic bodies, all other events have been observed in most protozoan parasites undergoing cell death. However, while techniques exist to detect these markers, they are often optimised for metazoan cells and therefore may not pick up subtle differences between the events occurring in unicellular organisms and multi-cellular organisms.In this review we discuss the markers most frequently used to analyze cell death in protozoan parasites, paying special attention to changes in cell morphology, mitochondrial activity, chromatin structure and plasma membrane structure/permeability. Regarding classical regulators/executors of apoptosis, we have reviewed the present knowledge of caspase-like and nuclease activities.
Resumo:
Uncertainty quantification of petroleum reservoir models is one of the present challenges, which is usually approached with a wide range of geostatistical tools linked with statistical optimisation or/and inference algorithms. Recent advances in machine learning offer a novel approach to model spatial distribution of petrophysical properties in complex reservoirs alternative to geostatistics. The approach is based of semisupervised learning, which handles both ?labelled? observed data and ?unlabelled? data, which have no measured value but describe prior knowledge and other relevant data in forms of manifolds in the input space where the modelled property is continuous. Proposed semi-supervised Support Vector Regression (SVR) model has demonstrated its capability to represent realistic geological features and describe stochastic variability and non-uniqueness of spatial properties. On the other hand, it is able to capture and preserve key spatial dependencies such as connectivity of high permeability geo-bodies, which is often difficult in contemporary petroleum reservoir studies. Semi-supervised SVR as a data driven algorithm is designed to integrate various kind of conditioning information and learn dependences from it. The semi-supervised SVR model is able to balance signal/noise levels and control the prior belief in available data. In this work, stochastic semi-supervised SVR geomodel is integrated into Bayesian framework to quantify uncertainty of reservoir production with multiple models fitted to past dynamic observations (production history). Multiple history matched models are obtained using stochastic sampling and/or MCMC-based inference algorithms, which evaluate posterior probability distribution. Uncertainty of the model is described by posterior probability of the model parameters that represent key geological properties: spatial correlation size, continuity strength, smoothness/variability of spatial property distribution. The developed approach is illustrated with a fluvial reservoir case. The resulting probabilistic production forecasts are described by uncertainty envelopes. The paper compares the performance of the models with different combinations of unknown parameters and discusses sensitivity issues.
Resumo:
We have explored in vitro the mechanism by which human immunodeficiency virus, type 1 (HIV-1) induces cell death of primary CD4+ T cells in conditions of productive infection. Although HIV-1 infection primed phytohemagglutinin-activated CD4+ T cells for death induced by anti-CD95 antibody, T cell death was not prevented by a CD95-Fc decoy receptor, nor by decoy receptors of other members of the TNFR family (TNFR1/R2, TRAILR1/R2/OPG, TRAMP) or by various blocking antibodies, suggesting that triggering of death receptors by their cognate ligands is not involved in HIV-induced CD4 T cell death. HIV-1 induced CD4 T cell shrinkage, cell surface exposure of phosphatidylserine, loss of mitochondrial membrane potential (Deltapsim), and mitochondrial release of cytochrome c and apoptosis-inducing factor. A typical apoptotic phenotype (nuclear chromatin condensation and fragmentation) only occurred in around half of the dying cells. Treatment with benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone, a broad spectrum caspase inhibitor, prevented nuclear chromatin condensation and fragmentation in HIV-infected CD4+ T cells and in a cell-free system (in which nuclei were incubated with cytoplasmic extracts from the HIV-infected CD4+ T cells). Nevertheless, benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone did not prevent mitochondrial membrane potential loss and cell death, suggesting that caspases are dispensable for HIV-mediated cell death. Our findings suggest a major role of the mitochondria in the process of CD4 T cell death induced by HIV, in which targeting of Bax to the mitochondria may be involved.
Resumo:
In celiac disease, enhanced permeability to gliadin peptides can result from their apico-basal transport by secretory immunoglobulin A1 (SIgA1) binding to the CD71 receptor ectopically expressed at the gut epithelial surface. Herein, we have established a mouse model in which there is apico-basal transport of the model antigen ovalbumin (OVA) by specific SIgA1 and have analyzed local T-cell activation. Transgenic DO11.10 mice were grafted with a hybridoma-secreting OVA-specific humanized IgA1, which could bind mouse CD71 and which were released in the intestinal lumen as SIgA. CD71 expression was induced at the gut apical surface by treating the mice with tyrphostin A8. Following gavage of the mice with OVA, OVA-specific CD4(+) T cells isolated from the mesenteric lymph nodes displayed higher expression of the activation marker CD69 and produced more interferon gamma in mice bearing the hybridoma-secreting OVA-specific IgA1, than in ungrafted mice or in mice grafted with an irrelevant hybridoma. These results indicate that the protective role of SIgA1 might be jeopardized in human pathological conditions associated with ectopic expression of CD71 at the gut surface.
Resumo:
The epithelial sodium channel (ENaC) is responsible for Na(+) and fluid absorption across colon, kidney, and airway epithelia. Short palate lung and nasal epithelial clone 1 (SPLUNC1) is a secreted, innate defense protein and an autocrine inhibitor of ENaC that is highly expressed in airway epithelia. While SPLUNC1 has a bactericidal permeability-increasing protein (BPI)-type structure, its NH2-terminal region lacks structure. Here we found that an 18 amino acid peptide, S18, which corresponded to residues G22-A39 of the SPLUNC1 NH2 terminus inhibited ENaC activity to a similar degree as full-length SPLUNC1 (∼2.5 fold), while SPLUNC1 protein lacking this region was without effect. S18 did not inhibit the structurally related acid-sensing ion channels, indicating specificity for ENaC. However, S18 preferentially bound to the βENaC subunit in a glycosylation-dependent manner. ENaC hyperactivity is contributory to cystic fibrosis (CF) lung disease. Unlike control, CF human bronchial epithelial cultures (HBECs) where airway surface liquid (ASL) height was abnormally low (4.2 ± 0.6 μm), addition of S18 prevented ENaC-led ASL hyperabsorption and maintained CF ASL height at 7.9 ± 0.6 μm, even in the presence of neutrophil elastase, which is comparable to heights seen in normal HBECs. Our data also indicate that the ENaC inhibitory domain of SPLUNC1 may be cleaved away from the main molecule by neutrophil elastase, suggesting that it may still be active during inflammation or neutrophilia. Furthermore, the robust inhibition of ENaC by the S18 peptide suggests that this peptide may be suitable for treating CF lung disease.
Resumo:
In sandflies, the absence of the peritrophic matrix (PM) affects the rate of blood digestion. Also, the kinetics of PM secretion varies according to species. We previously characterised PpChit1, a midgut-specific chitinase secreted in Phlebotomus papatasi (PPIS) that is involved in the maturation of the PM and showed that antibodies against PpChit1 reduce the chitinolytic activity in the midgut of several sandfly species. Here, sandflies were fed on red blood cells reconstituted with naïve or anti-PpChit1 sera and assessed for fitness parameters that included blood digestion, oviposition onset, number of eggs laid, egg bouts, average number of eggs per bout and survival. In PPIS, anti-PpChit1 led to a one-day delay in the onset of egg laying, with flies surviving three days longer compared to the control group. Anti-PpChit1 also had a negative effect on overall ability of flies to lay eggs, as several gravid females from all three species were unable to lay any eggs despite having lived longer than control flies. Whereas the longer survival might be associated with improved haeme scavenging ability by the PM, the inability of females to lay eggs is possibly linked to changes in PM permeability affecting nutrient absorption.
Resumo:
OBJECTIVES: Inhalation of bioaerosols has been hypothesised to cause "toxic pneumonitis" that should increase lung epithelial permeability at the bronchioloalveolar level. Serum Clara cell protein (CC16) and serum surfactant protein B (SPB) have been proposed as sensitive markers of lung epithelial injury. This study was aimed at looking for increased lung epithelial permeability by determining CC16 and SPB in workers exposed to bioaerosols from wastewater or garbage. METHODS: Subjects (778 wastewater, garbage and control workers; participation 61%) underwent a medical examination, lung function tests [American Thoracic Society (ATS) criteria], and determination of CC16 and SPB. Symptoms of endotoxin exposure and several potential confounders (age, gender, smoking, kidney function, obesity) were looked for. Results were examined with multiple linear or logistic regression. RESULTS: Exposure to bioaerosols increased CC16 concentration in the wastewater workers. No effect of exposure on SPB was found. No clue to work-related respiratory diseases was found. CONCLUSIONS: The increase in CC16 in serum supports the hypothesis that bioaerosols cause subclinical "toxic pneumonitis", even at low exposure. [Authors]
Resumo:
We analysed the composition of phyllosilicate minerals in sediments deposited by the Rhone and Oberaar glaciers (Swiss Alps), in order to identify processes and rates of biogeochemical weathering in relation to glacial erosion. The investigated sediments are part of chronosequences consisting of (A) suspended, "fresh" sediment in melt water; (B) terminal moraines from the Little Ice Age (LIA; approximately 1560-1850); and (C) tilts of the Younger Dryas interval (YD; approximately 11'500y BP). Secondary weathering products associated with the suspended sediment have not been observed: we therefore exclude intermittent subglacial storage and weathering of this material and assume that the suspended sediment is directly derived from mechanically abraded bedrock. This implies that biogeochemical weathering processes started once the glacially-derived sediment was deposited in the proglacial area. The combination of a developing vegetation cover, the generally high permeability allowing the percolation of precipitation, and the chemical reactivity related to the dominance of fine-grained material (<63 pm) drives the weathering process and the initial Umbrepts present in LIA profiles undergo podzolisation and lead to the formation of Humods observed in YD profiles. Systematic XRD analyses of these chronosequences show a progressive decrease in biotite contents and a concomitant increase in pedogenically formed vermiculite with increasing sediment age. Biotite contents decrease by 25-50% in the upper 30 cm of the moraines after 145-275 yr in the proglacial environment. Biotite weathering rates are calculated using the difference in the biotite content between unweathered and weathered glacial sediments within the investigated profiles. The reactive mineral surface area is estimated geometrically, both with regards to the total relative surface (WRT) as well as to the relative edge surface (WRE). WRT Biotite weathering rates are estimated as 10(-13)-10-(15) mol(biotite) m(biotite)(-2) s(-1). WRE Biotite weathering rates are on the order of 10(-13)-10(-14) mol(biotite) m(biotite)(-2) s(-1). Biotite weathering rates obtained by this study are in the order of one magnitude higher in comparison to other published field-based weathering rates. Using biotite as an indicator, we therefore suggest that glacially-derived material in the area of the Oberaar and Rhone glaciers is generally subjected to enhanced biogeochemical weathering, starting immediately after deposition in the proglacial zone and subsequently continuing for thousands of years after glacier retreat.