985 resultados para Ascospores and germination
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Phytochromes are red/far-red light photoreceptors that mediate a variety of photomorphogenic processes in plants, from germination to flowering. In addition, there is evidence that phytochromes are also part of the stress signalling response, especially in response to water deficit stress, which is the major abiotic factor limiting plant growth and crop productivity worldwide. In this study, we used the phyA (far red-insensitive; fri), phyB1 (temporary red-insensitive; tri) and phyB2 mutants of tomato (Solanum lycopersicum L.) to study the roles of these three phytochromes in drought stress responses. Compared to wild type (WT) plants grown under water-deficit stress conditions, the fri, tri, and phyB2 mutants did not exhibit altered dry weights, leaf areas, stomatal densities, or stomatal opening. The stomatal conductance of all three mutants was severely reduced under both fully-hydrated and water-deficit conditions. Although relative water contents did change after drought stress in each mutant, the most significant reduction in water potential during water stress was observed in the fri mutant. However, this mutant returned its water status to WT levels during rehydration. Although the phyB2 mutant lost more water from detached leaves during abscisic acid (ABA) treatment, phyB2 behaved like WT plants, indicating that this mutant was not insensitive to ABA. Overall, these results indicate that the phytochromes phyA, phyB1, and phyB2 modulate drought stress responses in tomato.
Resumo:
The aim of this study was to adapt the methodology of the accelerated aging and electrical conductivity tests for determination of physiological potential in crambe seeds. Six seed lots of crambe (cv. FMS Brilhante) were subjected to determination of moisture content, germination test, first count germination, emergence, and emergence speed index. For the accelerated aging test, the traditional methodology was used with water, and with a saturated potassium chloride and sodium chloride solution in three periods of exposure (24, 48, and 72 hours) at 41 degrees C; the electrical conductivity test was performed with four pre-soaking treatments (0, 2, 4, and 8 hours) and four soaking periods (4, 8, 16, and 24 hours) at 25 degrees C. The accelerated aging test with water for 72 hours and the electrical conductivity test with 2 hours of pre-soaking and assessment after 16 hours were effective for classification of the crambe seed lots in regard to physiological quality.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this study, we evaluated the efficiency of six isolates of Saccharomyces cerevisiae in controlling Colletotrichum acutatum, the causal agent of postbloom fruit drop that occur in pre-harvest citrus. We analyzed the mechanisms of action involved in biological control such as: production of antifungal compounds, nutrient competition, detection of killer activity, and production of hydrolytic enzymes of the isolates of S. cerevisiae on C. acutatum and their efficiency in controlling postbloom fruit drop on detached citrus flowers. Our results showed that all six S. cerevisiae isolates produced antifungal compounds, competed for nutrients, inhibited pathogen germination, and produced killer activity and hydrolytic enzymes when in contact with the fungus wall. The isolates were able to control the disease when detached flowers were artificially inoculated, both preventively and curatively. In this work we identified a novel potential biological control agent for C acutatum during pre-harvest. This is the first report of yeast efficiency for the biocontrol of postbloom fruit drop, which represents an important contribution to the field of biocontrol of diseases affecting citrus populations worldwide. (C) 2015 Elsevier GmbH. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Multivariate morphometrics and image analysis were used to determine the number of well-delineated infrageneric taxa of Sirodotia in North America. Three groupings were distinguished from 25 populations examined from Newfoundland and Quebec in the north to central Mexico in the south. These groupings were statistically related to 10 type specimens, and the following species were recognized: Sirodotia huillensis (Welwitsch ex W. et G. S. West) Skuja (syn. S. ateleia Skuja), S. suecica Kylin (syn. S. acuminata Skuja ex Flint and S. fennica Skuja), and S. tenuissima (Collins) Skuja ex Flint. These species are differentiated on the basis of whorl shape and degree of separation at maturity (S. suecica, rounded and appressed; S. huillensis and S. tenuissima, truncated apex and separated), the density of spermatangia (S. huillensis, dense clusters, S. suecica and S. tenuissima, sparsely aggregated), and the mode of germination of the gonimoblast initial (S. suecica and S. tenuissima,from the nonprotuberant side of the fertilized carpogonium; S. huillensis from the protuberant side). Sirodotia huillensis was found only in the desert-chaparral, whereas S. suecica and S. tenuissima occurred from south-temperate to boreal regions in cool (temperature 8-18-degrees-C), low ion (specific conductance 10-99 muS.cm-1), and mildly acidic to neutral (pH 5.7-7.3) waters.
Resumo:
The objective of this work was to develop a methodology for seed processing and X-ray analysis and to study imbibition pattern in seeds of candeia (Eremanthus incanus). Seeds were gathered in 2001 and 2002 in Morro do Pilar and Lavras respectively, processed and stored in a cold chamber (5ºC/60%RH) until the start of experiments. In order to identify unfilled seeds, a protocol was developed for X-ray use combining radiation energy (Kv) and exposure time (seconds). For elimination of unfilled seeds, an experiment was conducted using a South Dakota seed blower whereby different opening settings and ventilation times were combined. Original seed lots and categorized lots following radiograph viewing were tested by germination tests, with seeds being cleansed in sodium hypochlorite and scattered over blotting paper in 'gerboxes' and then taken to germinators with alternating temperatures of 20º-30ºC and 10 hours of light, for up to 15 days. Imbibition curves were determined under the conditions 30ºC, 20º-30ºC/10 hours of light and 30º-20ºC/10 hours of light. The X-ray protocol that best allowed viewing of internal seed structures was 30Kv for 45 seconds. Seed separation using the blower setting at a 3.0 opening for 30 seconds raised the number of embryonic seeds to values exceeding 99%, also raising the germination rates as a consequence. The imbibition pattern is three-phased and the germination process is completed in 72 hours. Under alternate temperatures, primary root growth is favored.
Resumo:
Suppression of plant diseases and growth promotion due to the action of endophytic microorganisms has been demonstrated in several pathosystems. Experiments under controlled conditions involving 234 endophytic bacteria and fungi isolated from coffee leaves, roots and branches were conducted with the objective of evaluating the germination inhibition of Hemileia vastatrix urediniospores, the control of coffee leaf rust development in tests with leaf discs and on plastic bags seedling, and to promote growth of coffee seedlings. None of the fungal isolates induced plant growth or reduced disease severity. The bacterial isolates (identified by the fatty acids profile analysis) 85G (Escherichia fergusonii), 161G, 163G, 160G, 150G (Acinetobacter calcoaceticus) and 109G (Salmonella enterica) increased plant growth, the maximum being induced by 85G. This isolate produced in vitro phosphatase and indol acetic acid. In assay to control rust on coffee leaf disc, nine bacterial isolates, 64R, 137G, 3F (Brevibacillus choshinensis), 14F (Salmonella enterica), 36F (Pectobacterium carotovorum), 109G (Bacillus megaterium), 115G (Microbacterium testaceum), 116G and 119G (Cedecea davisae) significantly reduced disease severity, when applied 72 or 24h before challenging with the pathogen. In seedling tests most disease severity reduction was achieved by the isolates 109G and 119G. There was no correspondence between the organisms that promoted seedling growth and those that reduced rust severity on seedlings or leaf discs.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Background and aims South America and Oceania possess numerous floristic similarities, often confirmed by morphological and molecular data. The carnivorous Drosera meristocaulis (Droseraceae), endemic to the Neblina highlands of northern South America, was known to share morphological characters with the pygmy sundews of Drosera sect. Bryastrum, which are endemic to Australia and New Zealand. The inclusion of D. meristocaulis in a molecular phylogenetic analysis may clarify its systematic position and offer an opportunity to investigate character evolution in Droseraceae and phylogeographic patterns between South America and Oceania. Methods Drosera meristocaulis was included in a molecular phylogenetic analysis of Droseraceae, using nuclear internal transcribed spacer (ITS) and plastid rbcL and rps16 sequence data. Pollen of D. meristocaulis was studied using light microscopy and scanning electron microscopy techniques, and the karyotype was inferred from root tip meristem. Key Results The phylogenetic inferences (maximum parsimony, maximum likelihood and Bayesian approaches) substantiate with high statistical support the inclusion of sect. Meristocaulis and its single species, D. meristocaulis, within the Australian Drosera clade, sister to a group comprising species of sect. Bryastrum. A chromosome number of 2n = approx. 32–36 supports the phylogenetic position within the Australian clade. The undivided styles, conspicuous large setuous stipules, a cryptocotylar (hypogaeous) germination pattern and pollen tetrads with aperture of intermediate type 7–8 are key morphological traits shared between D. meristocaulis and pygmy sundews of sect. Bryastrum from Australia and New Zealand. Conclusions The multidisciplinary approach adopted in this study (using morphological, palynological, cytotaxonomic and molecular phylogenetic data) enabled us to elucidate the relationships of the thus far unplaced taxon D. meristocaulis. Long-distance dispersal between southwestern Oceania and northern South America is the most likely scenario to explain the phylogeographic pattern revealed.
Resumo:
Abstract. Based on prior field observations, we hypothesized that individual and interacting effects of plant size, density, insect herbivory, and especially fungal disease, influenced seedling and juvenile plant growth in native Platte thistle populations (Cirsium canescens Nutt.). We worked at Arapaho Prairie in the Nebraska Sandhills (May - August 2007), monitoring plant growth, insect damage, and fungal infection within different density thistle patches. In the main experiment, we sprayed half of test plants in different density patches with fungicide (Fungonil© Bonide, containing chlorothalonil) and half with a water control. Fungal infection rates were very low, so we found no difference in fungal attack between these treatments. However, plants that received the fungicide treatment had significantly faster growth over the season than did the control plants. At the same time, plants in the fungicide treatment had significantly reduced insect herbivory. These results strongly suggest that the fungicide had insecticidal effects and that insect herbivory significantly decreases juvenile Platte thistle growth. Further, damage by insect herbivores tended to be higher for larger plants, and herbivory was variable among different patches. However, plant density did not appear to have a large effect on the amount of insect herbivory that individual juvenile Platte thistle plants received. In the second experiment, we examined germination and survival success in relationship to seed density, and found that germination success was higher in areas of lower seed density. In the third experiment, we tested germination for filled seeds categorized primarily by color variation and size, and found no difference in germination related to either color or seed weight. We conclude that seed density, but not seed quality as estimated by color or size, affects germination success. Further, although herbivory was not significantly affected by plant density at any of the scales examined, insect herbivory significantly reduces the growth and success of juveniles of this characteristic native sand prairie plant.
Resumo:
Background: Drought is a major abiotic stress that affects crop productivity worldwide. Sugarcane can withstand periods of water scarcity during the final stage of culm maturation, during which sucrose accumulation occurs. Meanwhile, prolonged periods of drought can cause severe plant losses. Methodology/Principal Findings: In a previous study, we evaluated the transcriptome of drought-stressed plants to better understand sugarcane responses to drought. Among the up-regulated genes was Scdr1 (sugarcane drought-responsive 1). The aim of the research reported here was to characterize this gene. Scdr1 encodes a putative protein containing 248 amino acids with a large number of proline (19%) and cysteine (13%) residues. Phylogenetic analysis showed that ScDR1is in a clade with homologs from other monocotyledonous plants, separate from those of dicotyledonous plants. The expression of Scdr1 in different varieties of sugarcane plants has not shown a clear association with drought tolerance. Conclusions/Significance: The overexpression of Scdr1 in transgenic tobacco plants increased their tolerance to drought, salinity and oxidative stress, as demonstrated by increased photosynthesis, water content, biomass, germination rate, chlorophyll content and reduced accumulation of ROS. Physiological parameters, such as transpiration rate (E), net photosynthesis (A), stomatal conductance (gs) and internal leaf CO2 concentration, were less affected by abiotic stresses in transgenic Scdr1 plants compared with wild-type plants. Overall, our results indicated that Scdr1 conferred tolerance to multiple abiotic stresses, highlighting the potential of this gene for biotechnological applications.