970 resultados para Articular Cartilage, MRI, Diffusion Tensor Imaging, Fractional Anisotropy, Osteoarthritis.
Resumo:
Mathematics Subject Classification: 26A33, 31B10
Resumo:
Mathematics Subject Classification 2010: 26A33, 33E12, 35S10, 45K05.
Resumo:
Mathematical Subject Classification 2010: 35R11, 42A38, 26A33, 33E12.
Resumo:
Mathematics Subject Classi¯cation 2010: 26A33, 65D25, 65M06, 65Z05.
Resumo:
MSC 2010: 26A33, 33E12, 34K29, 34L15, 35K57, 35R30
Resumo:
MSC 2010: 35R11, 42A38, 26A33, 33E12
Resumo:
© 2015 The British Psychological Society.
Resumo:
© 2015 The British Psychological Society.
Resumo:
Grant support This study was supported by an award (Ref: WHMSB-AU119) from the Translational Medicine Research Collaboration – a consortium made up of the Universities of Aberdeen, Dundee, Edinburgh and Glasgow, the four associated NHS Health Boards (Grampian, Tayside, Lothian and Greater Glasgow & Clyde), Scottish Enterprise and Wyeth. The funder played no part in the design, execution, analysis or publication of this paper.
Resumo:
Magnetic Resonance Imaging (MRI) is the in vivo technique most commonly employed to characterize changes in brain structures. The conventional MRI-derived morphological indices are able to capture only partial aspects of brain structural complexity. Fractal geometry and its most popular index, the fractal dimension (FD), can characterize self-similar structures including grey matter (GM) and white matter (WM). Previous literature shows the need for a definition of the so-called fractal scaling window, within which each structure manifests self-similarity. This justifies the existence of fractal properties and confirms Mandelbrot’s assertion that "fractals are not a panacea; they are not everywhere". In this work, we propose a new approach to automatically determine the fractal scaling window, computing two new fractal descriptors, i.e., the minimal and maximal fractal scales (mfs and Mfs). Our method was implemented in a software package, validated on phantoms and applied on large datasets of structural MR images. We demonstrated that the FD is a useful marker of morphological complexity changes that occurred during brain development and aging and, using ultra-high magnetic field (7T) examinations, we showed that the cerebral GM has fractal properties also below the spatial scale of 1 mm. We applied our methodology in two neurological diseases. We observed the reduction of the brain structural complexity in SCA2 patients and, using a machine learning approach, proved that the cerebral WM FD is a consistent feature in predicting cognitive decline in patients with small vessel disease and mild cognitive impairment. Finally, we showed that the FD of the WM skeletons derived from diffusion MRI provides complementary information to those obtained from the FD of the WM general structure in T1-weighted images. In conclusion, the fractal descriptors of structural brain complexity are candidate biomarkers to detect subtle morphological changes during development, aging and in neurological diseases.
Resumo:
Quantitative imaging in oncology aims at developing imaging biomarkers for diagnosis and prediction of cancer aggressiveness and therapy response before any morphological change become visible. This Thesis exploits Computed Tomography perfusion (CTp) and multiparametric Magnetic Resonance Imaging (mpMRI) for investigating diverse cancer features on different organs. I developed a voxel-based image analysis methodology in CTp and extended its use to mpMRI, for performing precise and accurate analyses at single-voxel level. This is expected to improve reproducibility of measurements and cancer mechanisms’ comprehension and clinical interpretability. CTp has not entered the clinical routine yet, although its usefulness in the monitoring of cancer angiogenesis, due to different perfusion computing methods yielding unreproducible results. Instead, machine learning applications in mpMRI, useful to detect imaging features representative of cancer heterogeneity, are mostly limited to clinical research, because of results’ variability and difficult interpretability, which make clinicians not confident in clinical applications. In hepatic CTp, I investigated whether, and under what conditions, two widely adopted perfusion methods, Maximum Slope (MS) and Deconvolution (DV), could yield reproducible parameters. To this end, I developed signal processing methods to model the first pass kinetics and remove any numerical cause hampering the reproducibility. In mpMRI, I proposed a new approach to extract local first-order features, aiming at preserving spatial reference and making their interpretation easier. In CTp, I found out the cause of MS and DV non-reproducibility: MS and DV represent two different states of the system. Transport delays invalidate MS assumptions and, by correcting MS formulation, I have obtained the voxel-based equivalence of the two methods. In mpMRI, the developed predictive models allowed (i) detecting rectal cancers responding to neoadjuvant chemoradiation showing, at pre-therapy, sparse coarse subregions with altered density, and (ii) predicting clinically significant prostate cancers stemming from the disproportion between high- and low- diffusivity gland components.
Resumo:
The purpose of this study was to correlate the pre-operative imaging, vascularity of the proximal pole, and histology of the proximal pole bone of established scaphoid fracture non-union. This was a prospective non-controlled experimental study. Patients were evaluated pre-operatively for necrosis of the proximal scaphoid fragment by radiography, computed tomography (CT) and magnetic resonance imaging (MRI). Vascular status of the proximal scaphoid was determined intra-operatively, demonstrating the presence or absence of puncate bone bleeding. Samples were harvested from the proximal scaphoid fragment and sent for pathological examination. We determined the association between the imaging and intra-operative examination and histological findings. We evaluated 19 male patients diagnosed with scaphoid nonunion. CT evaluation showed no correlation to scaphoid proximal fragment necrosis. MRI showed marked low signal intensity on T1-weighted images that confirmed the histological diagnosis of necrosis in the proximal scaphoid fragment in all patients. Intra-operative assessment showed that 90% of bones had absence of intra-operative puncate bone bleeding, which was confirmed necrosis by microscopic examination. In scaphoid nonunion MRI images with marked low signal intensity on T1-weighted images and the absence of intra-operative puncate bone bleeding are strong indicatives of osteonecrosis of the proximal fragment.
Resumo:
OBJECTIVE: To describe the role of magnetic resonance imaging (MRI) in the evaluation of patients with chronic and recurrent aseptic meningitis.METHOD: A retrospective study of five patients with aseptic meningoencefalitis diagnosed by clinical and CSF findings. CT scans showed without no relevant findings. RESULTS: MRI showed small multifocal lesions hyperintense on T2 weighted images and FLAIR, with mild or no gadolinium enhancement, mainly in periventricular and subcortical regions. Meningoencephalitis preceded the diagnosis of the underlying disease in four patients (Behçet´s disease or systemic lupus erythematosus). After the introduction of adequate treatment for the rheumatic disease, they did not present further symptoms of aseptic meningoencephalitis. CONCLUSION: Aseptic meningoencephalitis can be an early presentation of an autoimmune disease. It is important to emphasize the role of MRI in the diagnosis and follow-up of these patients.