959 resultados para Arsenic de gallium


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrocoagulation is a process in which wastewater is treated under electrical current. Coagulant is formed during the process through the metal anode dissolution to respective ions which react with hydroxyl ions released in cathode. These metal hydroxides form complexes with pollutant ions. Pollutants are removed among metal hydroxide precipitates. This study was concentrated on describing chemistry and device structures in which electrochemical treatment operations are based on. Studied pollutants were nitrogen compounds, sulphate, trivalent and pentavalent arsenic, heavy metals, phosphate, fluoride, chloride, and bromide. In experimental part, removal of ammonium, nitrate, and sulphate during electrochemical treatment was studied separately. Main objective of this study was to find suitable metal plate material for ammonium, nitrate, and sulphate removal, respectively. Also other parameters such as pH of solution, concentration of pollutant and sodium chloride, and current density were optimized. According to this study the most suitable material for ammonium and sulphate removal by electrochemical treatment was stainless steel. Respectively, iron was the optimum material for nitrate removal. Rise in the pH of solution at the final stage of electrochemical treatment of ammonium, nitrate, and sulphate was detected. Conductivities of solutions decreased during ammonium removal in electrochemical processes. When nitrate and sulphate were removed electrochemically conductivities of solutions increased. Concentrations of residual metals in electrochemically treated solutions were not significant. Based on this study electrochemical treatment processes are recommended to be used in treatment of industrial wastewaters. Treatment conditions should be optimized for each wastewater matrix.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Investigation of high pressure pretreatment process for gold leaching is the objective of the present master's thesis. The gold ores and concentrates which cannot be easily treated by leaching process are called "refractory". These types of ores or concentrates often have high content of sulfur and arsenic that renders the precious metal inaccessible to the leaching agents. Since the refractory ores in gold manufacturing industry take a considerable share, the pressure oxidation method (autoclave method) is considered as one of the possible ways to overcome the related problems. Mathematical modeling is the main approach in this thesis which was used for investigation of high pressure oxidation process. For this task, available information from literature concerning this phenomenon, including chemistry, mass transfer and kinetics, reaction conditions, applied apparatus and application, was collected and studied. The modeling part includes investigation of pyrite oxidation kinetics in order to create a descriptive mathematical model. The following major steps are completed: creation of process model by using the available knowledge; estimation of unknown parameters and determination of goodness of the fit; study of the reliability of the model and its parameters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This doctoral thesis describes the development work performed on the leachand purification sections in the electrolytic zinc plant in Kokkola to increase the efficiency in these two stages, and thus the competitiveness of the plant. Since metallic zinc is a typical bulk product, the improvement of the competitiveness of a plant was mostly an issue of decreasing unit costs. The problems in the leaching were low recovery of valuable metals from raw materials, and that the available technology offered complicated and expensive processes to overcome this problem. In the purification, the main problem was consumption of zinc powder - up to four to six times the stoichiometric demand. This reduced the capacity of the plant as this zinc is re-circulated through the electrolysis, which is the absolute bottleneck in a zinc plant. Low selectivity gave low-grade and low-value precipitates for further processing to metallic copper, cadmium, cobalt and nickel. Knowledge of the underlying chemistry was poor and process interruptions causing losses of zinc production were frequent. Studies on leaching comprised the kinetics of ferrite leaching and jarosite precipitation, as well as the stability of jarosite in acidic plant solutions. A breakthrough came with the finding that jarosite could precipitate under conditions where ferrite would leach satisfactorily. Based on this discovery, a one-step process for the treatment of ferrite was developed. In the plant, the new process almost doubled the recovery of zinc from ferrite in the same equipment as the two-step jarosite process was operated in at that time. In a later expansion of the plant, investment savings were substantial compared to other technologies available. In the solution purification, the key finding was that Co, Ni, and Cu formed specific arsenides in the “hot arsenic zinc dust” step. This was utilized for the development of a three-step purification stage based on fluidized bed technology in all three steps, i.e. removal of Cu, Co and Cd. Both precipitation rates and selectivity increased, which strongly decreased the zinc powder consumption through a substantially suppressed hydrogen gas evolution. Better selectivity improved the value of the precipitates: cadmium, which caused environmental problems in the copper smelter, was reduced from 1-3% reported normally down to 0.05 %, and a cobalt cake with 15 % Co was easily produced in laboratory experiments in the cobalt removal. The zinc powder consumption in the plant for a solution containing Cu, Co, Ni and Cd (1000, 25, 30 and 350 mg/l, respectively), was around 1.8 g/l; i.e. only 1.4 times the stoichiometric demand – or, about 60% saving in powder consumption. Two processes for direct leaching of the concentrate under atmospheric conditions were developed, one of which was implemented in the Kokkola zinc plant. Compared to the existing pressure leach technology, savings were obtained mostly in investment. The scientific basis for the most important processes and process improvements is given in the doctoral thesis. This includes mathematical modeling and thermodynamic evaluation of experimental results and hypotheses developed. Five of the processes developed in this research and development program were implemented in the plant and are still operated. Even though these processes were developed with the focus on the plant in Kokkola, they can also be implemented at low cost in most of the zinc plants globally, and have thus a great significance in the development of the electrolytic zinc process in general.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Maapallon väestön kasvaessa ja tarpeen makealle vedelle, ruualle ja viljelymaalle noustessa on tärkeää alkaa kiinnittää entistä tarkemmin huomiota vesistöjen ja maaperän saastumiseen myrkyllisillä raskasmetalleilla. Erityisesti elohopea ja arseeni, jotka jo nyt vaikuttavat heikentävästi miljoonien ihmisten elämään eri puolilla maapalloa, on syytä ottaa huolelliseen tarkkailuun. Raskasmetallien päästölähteet voidaan jakaa kahteen luokkaan, luonnollisiin ja ihmisperäisiin. Ihmisperäisiin päästölähteisiin voidaan vaikuttaa muun muassa teollisuutta ja liikennettä koskevalla lainsäädännöllä. Luonnollisiin päästölähteisiin vaikuttaminen on huomattavasti haastavampaa, mutta niiden haittaa ihmisille on mahdollista pienentää muun muassa parempien vedenpuhdistustekniikoiden avulla. Tämän työn kirjallisuusosassa tullaan esittelemään erityyppisiä luonnossa esiintyviä arseenin ja elohopean yhdisteitä, suurimpia arseenin ja elohopean päästölähteitä, sekä näiden raskasmetallien haitallisia terveysvaikutuksia. Kokeellisessa osassa tullaan keskittymään arseenin analysointiin nestemäisistä näytteistä. Näytteinä käytettiin tuntemattomilta kaatopaikoilta otettuja suotovesinäytteitä, sekä Pien-Saimaan pintavesinäytteitä. Analyyseihin on käytetty ICP-AES laitteistoa sekä kapillaarielektroforeesia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the framework of the biorefinery concept researchers aspire to optimize the utilization of plant materials, such as agricultural wastes and wood. For most of the known processes, the first steps in the valorisation of biomass are the extraction and purification of the individual components. The obtained raw products by means of a controlled separation can consecutively be modified to result in biofuels or biogas for energy production, but also in value-added products such as additives and important building blocks for the chemical and material industries. Considerable efforts are undertaken in order to substitute the use of oil-based starting materials or at least minimize their processing for the production of everyday goods. Wood is one of the raw materials, which have gained large attention in the last decades and its composition has been studied in detail. Nowadays, the extraction of water-soluble hemicelluloses from wood is well known and so for example xylan can be obtained from hardwoods and O-acetyl galactoglucomannans (GGMs) from softwoods. The aim of this work was to develop water-soluble amphiphilic materials of GGM and to assess their potential use as additives. Furthermore, GGM was also applied as a crosslinker in the synthesis of functional hydrogels for the removal of toxic metals and metalloid ions from aqueous solutions. The distinguished products were obtained by several chemical approaches and analysed by nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared spectroscopy (FTIR), size exclusion chromatography (SEC), thermal gravimetric analysis (TGA), scanning electron microscope SEM, among others. Bio-based surfactants were produced by applying GGM and different fatty acids as starting materials. On one hand, GGM-grafted-fatty acids were prepared by esterification and on the other hand, well-defined GGM-block-fatty acid derivatives were obtained by linking amino-functional fatty acids to the reducing end of GGM. The reaction conditions for the syntheses were optimized and the resultant amphiphilic GGM derivatives were evaluated concerning their ability to reduce the surface tension of water as surfactants. Furthermore, the block-structured derivatives were tested in respect to their applicability as additives for the surface modification of cellulosic materials. Besides the GGM surfactants with a bio-based hydrophilic and a bio-based hydrophobic part, also GGM block-structured derivatives with a synthetic hydrophobic tail, consisting of a polydimethylsiloxane chain, were prepared and assessed for the hydrophobization of surface of nanofibrillated cellulose films. In order to generate GGM block-structured derivatives containing a synthetic tail with distinguished physical and chemical properties, as well as a tailored chain length, a controlled polymerization method was used. Therefore, firstly an initiator group was introduced at the reducing end of the GGM and consecutively single electron transfer-living radical polymerization (SET-LRP) was performed by applying three different monomers in individual reactions. For the accomplishment of the synthesis and the analysis of the products, challenges related to the solubility of the reactants had to be overcome. Overall, a synthesis route for the production of GGM block-copolymers bearing different synthetic polymer chains was developed and several derivatives were obtained. Moreover, GGM with different molar masses were, after modification, used as a crosslinker in the synthesis of functional hydrogels. Hereby, a cationic monomer was used during the free radical polymerization and the resultant hydrogels were successfully tested for the removal of chromium and arsenic ions from aqueous solutions. The hydrogel synthesis was tailored and materials with distinguished physical properties, such as the swelling rate, were obtained after purification. The results generated in this work underline the potential of bio-based products and the urge to continue carrying out research in order to be able to use more green chemicals for the manufacturing of biorenewable and biodegradable daily products.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phosphatidylserine (PS) exposure occurs during the cell death program and fluorescein-labeled lactadherin permits the detection of PS exposure earlier than annexin V in suspended cell lines. Adherent cell lines were studied for this apoptosis-associated phenomenon to determine if PS probing methods are reliable because specific membrane damage may occur during harvesting. Apoptosis was induced in the human tongue squamous carcinoma cell line (Tca8113) and the adenoid cystic carcinoma cell line (ACC-2) by arsenic trioxide. Cells were harvested with a modified procedure and labeled with lactadherin and/or annexin V. PS exposure was localized by confocal microscopy and apoptosis was quantified by flow cytometry. The detachment procedure without trypsinization did not induce cell damage. In competition binding experiments, phospholipid vesicles competed for more than 95 and 90% of lactadherin but only about 75 and 70% of annexin V binding to Tca8113 and ACC-2 cells. These data indicate that PS exposure occurs in three stages during the cell death program and that fluorescein-labeled lactadherin permitted the detection of early PS exposure. A similar pattern of PS exposure has been observed in two malignant cell lines with different adherence, suggesting that this pattern of PS exposure is common in adherent cells. Both lactadherin and annexin V could be used in adherent Tca8113 and ACC-2 cell lines when an appropriate harvesting procedure was used. Lactadherin is more sensitive than annexin V for the detection of PS exposure as the physical structure of PS in these blebs and condensed apoptotic cell surface may be more conducive to binding lactadherin than annexin V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis the basic structure and operational principals of single- and multi-junction solar cells are considered and discussed. Main properties and characteristics of solar cells are briefly described. Modified equipment for measuring the quantum efficiency for multi-junction solar cell is presented. Results of experimental research single- and multi-junction solar cells are described.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sustainability and recycling are core values in today’s industrial operations. New materials, products and processes need to be designed in such a way as to consume fewer of the diminishing resources we have available and to put as little strain on the environment as possible. An integral part of this is cleaning and recycling. New processes are to be designed to improve the efficiency in this aspect. Wastewater, including municipal wastewaters, is treated in several steps including chemical and mechanical cleaning of waters. Well-cleaned water can be recycled and reused. Clean water for everyone is one of the greatest challenges we are facing today. Ferric sulphate, made by oxidation from ferrous sulphate, is used in water purification. The oxidation of ferrous sulphate, FeSO4, to ferric sulphate in acidic aqueous solutions of H2SO4 over finely dispersed active carbon particles was studied in a vigorously stirred batch reactor. Molecular oxygen was used as the oxidation agent and several catalysts were screened: active carbon, active carbon impregnated with Pt, Rh, Pd and Ru. Both active carbon and noble metal-active carbon catalysts enhanced the oxidation rate considerably. The order of the noble metals according to the effect was: Pt >> Rh > Pd, Ru. By the use of catalysts, the production capacities of existing oxidation units can be considerably increased. Good coagulants have a high charge on a long polymer chain effectively capturing dirty particles of the opposite charge. Analysis of the reaction product indicated that it is possible to obtain polymeric iron-based products with good coagulation properties. Systematic kinetic experiments were carried out at the temperature and pressure ranges of 60B100°C and 4B10 bar, respectively. The results revealed that both non-catalytic and catalytic oxidation of Fe2+ to Fe3+ take place simultaneously. The experimental data were fitted to rate equations, which were based on a plausible reaction mechanism: adsorption of dissolved oxygen on active carbon, electron transfer from Fe2+ ions to adsorbed oxygen and formation of surface hydroxyls. A comparison of the Fe2+ concentrations predicted by the kinetic model with the experimentally observed concentrations indicated that the mechanistic rate equations were able to describe the intrinsic oxidation kinetics of Fe2+ over active carbon and active carbon-noble metal catalysts. Engineering aspects were closely considered and effort was directed to utilizing existing equipment in the production of the new coagulant. Ferrous sulphate can be catalytically oxidized to produce a novel long-chained polymeric iron-based flocculent in an easy and affordable way in existing facilities. The results can be used for modelling the reactors and for scale-up. Ferric iron (Fe3+) was successfully applied for the dissolution of sphalerite. Sphalerite contains indium, gallium and germanium, among others, and the application can promote their recovery. The understanding of the reduction process of ferric to ferrous iron can be used to develop further the understanding of the dissolution mechanisms and oxidation of ferrous sulphate. Indium, gallium and germanium face an ever-increasing demand in the electronics industry, among others. The supply is, however, very limited. The fact that most part of the material is obtained through secondary production means that real production quota depends on the primary material production. This also sets the pricing. The primary production material is in most cases zinc and aluminium. Recycling of scrap material and the utilization of industrial waste, containing indium, gallium and geranium, is a necessity without real options. As a part of this study plausible methods for the recovery of indium, gallium and germanium have been studied. The results were encouraging and provided information about the precipitation of these valuables from highly acidic solutions. Indium and gallium were separated from acidic sulphuric acid solutions by precipitation with basic sulphates such as alunite or they were precipitated as basic sulphates of their own as galliunite and indiunite. Germanium may precipitate as a basic sulphate of a mixed composition. The precipitation is rapid and the selectivity is good. When the solutions contain both indium and gallium then the results show that gallium should be separated before indium to achieve a better selectivity. Germanium was separated from highly acidic sulphuric acid solutions containing other metals as well by precipitating with tannic acid. This is a highly selective method. According to the study other commonly found metals in the solution do not affect germanium precipitation. The reduction of ferric iron to ferrous, the precipitation of indium, gallium and germanium, and the dissolution of the raw materials are strongly depending on temperature and pH. The temperature and pH effect were studied and which contributed to the understanding and design of the different process steps. Increased temperature and reduced pH improve the reduction rate. Finally, the gained understanding in the studied areas can be employed to develop better industrial processes not only on a large scale but also increasingly on a smaller scale. The small amounts of indium, gallium and germanium may favour smaller and more locally bound recovery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to investigate the presence of arsenic, lead, and cadmium residues in samples of liver, kidney, and muscle of cattle during the years of 2002 to 2008. A total of 1017 samples from 20 Brazilian States were used. The samples were analyzed at the National Agricultural Laboratory using the atomic absorption spectrometry technique. Arsenic residues were detected in 15.7% of liver samples and 28.7% of kidney samples although no results have exceeded the MRL. With regard to lead, 16 samples of liver and 74 samples of kidney were contaminated (5.2 and 10.9%, respectively). Among these samples, only one liver and two of kidney samples had lead levels above the MRL. Cadmium was found with levels below the MRL in 12.5% of the liver samples, and only 3 samples (1%) were quantified above the MRL. Among the kidney samples, 420 (60.8% of the total tested) had cadmium residues, and five of them exceeded the limits established by legislation. It is concluded that the Brazilian meat meets the legislation requirements without putting consumer's healthy at risk since as it satisfies the national and international food-safety conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tässä diplomityössä käsiteltiin spektrometrisia online-mittausmenetelmiä jätteiden kemiallisten ja fysikaalisten ominaisuuksien määrittämiseksi. Tavoitteena oli selvittää, mitä ominaisuuksia menetelmillä voidaan mitata ja kuinka luotettavia tuloksia mittauksilla saadaan. Diplomityössä suoritettiin kirjallisuuskatsaus, jossa käsiteltiin kolmen spektrometrisen menetelmän soveltuvuutta reaaliaikaisiin jätemittauksiin. Työn empiirisessä osassa FPXRFanalysaattorilla mitattiin neljän eri jätenäytteen alkuainepitoisuuksia. Mittauksen tarkoituksena oli selvittää, mitä alkuaineita menetelmällä voidaan mitata. FPXRF-analysaattorilla saatuja tuloksia verrattiin ICP-MS-menetelmällä saatuihin tuloksiin regressioanalyysin avulla. Työssä todettiin, että FPXRF-analysaattori sopii parhaiten kaliumin, kalsiumin, ja raudan pitoisuuksien määrittämiseen. Lisäksi lyijyn, sinkin, kromin, kloorin, kuparin, kadmiumin, arseenin, fosforin, molybdeenin ja vanadiinin määrittäminen on mahdollista, mutta tarkan pitoisuuden saamiseksi laboratoriomenetelmien käyttö voi olla tarpeen. Tutkituista jätenäytteistä menetelmä soveltui parhaiten tuhkalle ja kompostille niiden fyysisten ominaisuuksien, kuten homogeenisuuden ja kosteuspitoisuuden takia. Biojätteelle menetelmä soveltui huonosti. FPXRF-analysaattorin luotettavuuteen vaikuttaa näytteen kosteuspitoisuus, homogeenisuus, partikkelikoko, mittaustapa ja laitteen kalibrointi. Työssä tarkastelluilla menetelmillä ei voida tällä hetkellä täysin korvata laboratorioanalyyseja. FPXRF-analysaattoria voidaan kuitenkin käyttää kvalitatiiviseen tai semikvantitatiiviseen haitta-aineiden analysointiin, millä voidaan vähentää kalliiden laboratorioanalyysien tarvetta.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analytical methods for the determination of trace amounts of germanium, tin and arsenic were established using hydride generation coupled with direct current plasma atomic emission spectrometry. A continuous gas flowing batch system for the hydride generation was investigated and was applied to the determination of germanium(Ge), tin(Sn), antimony(Sb) and lead(Pb) (Preliminary results suggest that it is also applicable to arsenic)As) ). With this system, the reproducibility of signals was improved and the determination was speeded up, compared with the conventional batch type hydride generation system. Each determination was complete within one minute. Interferences from a number of transition metal ions, especially from Pd(II), Pt(IV), Ni(II), Cu(II), Co(II), and Fe(II, III), have proven to be very serious under normal conditions, in the determination of germanium, tin, and arsenic. These interference effects were eliminated or significantly reduced in the presence of L-cystine or L-cysteine. Thus, a 10-1000 fold excess of Ni(II), Cu(II), Co(II), Fe(II), Pt(IV), Pd(II), etc. can be tolerated without interference, In the presence of L-cystine or L-cysteine, compared with absence of interference reducing agent. The methods for the determination of Ge, Sn, and As were examined by the analyses of standard reference materials. Interference effects from the sample matrix, for example, in transition metal-rich samples, copper, iron and steel, were eliminated by L-cystine (for As and Sn) and by LI cysteine (for Ge). The analysis of a number of standard reference materials gave excellent results of As and Sn contents in agreement with the certified values, showing there was no systematic interference. The detection limits for both germanium and tin were 20 pg ml- I . Preliminary studies were carried out for the determination of antimony and lead. Antimony was found to react with NaBH4, remaInIng from the previous determinations, giving an analytical signal. A reversed injection manner, i.e., injection of the NaBH4 solution prior to the analyte solution was used to avoid uncertainty caused by residual NaBH4 present and to ensure that an excess of NaB H4 was available. A solution of 0.4% L-cysteine was found to reduce the interference from selected transition metal ions, Co(II), Cu(II), Ni(II) and Pt(IV). Hydrochloric acid - hydrogen peroxide, nitric acid - ammonium persulphate, and potassium dichromate malic acid reaction systems for lead hydride generation were compared. The potassium dichromate - malic acid reaction medium proved to be the best with respect to reproducibility and minimal interference. Cu(II), Ni(II), and Fe(II) caused strong interference In lead determinations, which was not reduced by L-cysteine or Lcystine. Sodium citrate, ascorbic acid, dithizone, thiosemicarbazide and penicillamine reduced interferences to some extent. Further interference reduction studies were carried out uSIng a number of amino acids, glycine, alanine, valine, leucine and histidine, as possible interference reducing agents in the determination of germanium. From glycine, alanine, valine to leucine, the interference reduction effect in germanium determinations decreased. Histidine II was found to be very promising In the reduction of interference. In fact, histidine proved more efficient than L-cystine and L-cysteine In the reduction of interference from Ni(II) in the determination of germanium. Signal enhancement by easily ionized elements (EIEs), usually regarded as an interference effect in analysis by DCP-AES, was studied and successfully applied to advantage in improving the sensitivity and detection limit in the determination of As, Ge, Sn, Sb, and Pb. The effect of alkali and alkaline-earth elements on the determination of the above five hydride forming elements was studied. With the appropriate EIE, a signal enhancement of 40-115% was achieved. Linear calibration and good reproducibility were also obtained in the presence of EIEs. III

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mass spectra of compounds of t he series (C6F5 )3-n MP~ (n = 1,2,3, M = P and As ), (C6F5>3Sb, Ph) Sb and (C6F5 )2SbPh have been studied in detail and the important modes of fragmentation were e1ucidated, a ided by metastable ions. Various trends attributed to the central atom and or the . substituent groups have been noted and, where applicable, compared to recent studies on related phenyl and pentafluorophenyl compounds of groups IV and V. The mass spectra of fluorine containing organometallic compounds exhibit characteristic migrations of fluorine to t he central atom, giving an increasing abundance of MF+, MF2+' and RMF+ (R = Ph or C6F5) ions on descending the group_ The mass spectra of pentafluorophenyl , antimony, and arsenic compounds show a greater fragmentation of the aromatic ring than those of phosphorus. The mixed phenyl pentafluorophenyl derivatives show a characteristic pattern depending on the number of phenyl grm.lps present but show t he general characteristics of both the tris(phenyl) and tris(pentafluorophenyl) compounds. The diphenyl pentafluorophenyl der ivatives show the loss of biphenyl ion as the most import ant step, the los s of phenyl t o give the i on PhMC6F5 + being of secondary importance. The ,bis(pentafluorophenyl) phenyl derivatives fragment primarily by loss of PhC6F5 to give C6F5M+ ions, the abundance of t hese increasing r apidly from phosphorus to arsenic. This species then, exhibits a characteristic fragmentation observed in the tris(penta- fluorophenyl ) compounds. However, the abundance of (C6F5)2M+ species in these compounds i s small. I ons of the type C6H4MC6F4 + and tetrafluorobiphenylene ions C6H4C6F4 + also are observed on substitution of a phenyl group for a penta- fluorophenyl group. The fully fluorinated species (C6F4)2M+ is not observed, although octafluorobiphenylene ions , (C6F4)2+' are evident in several spectra . The appearance potentials of the major ions were obtatned from the ionisation efficiency curves. Attempts were made to correlate these to the effect of the central atom in substituent groups, but the large errors involved prevented the reaching of quantitative conclusions, although it would appear that the electron is removed from the ligand in the ionisation of t he parent molecule .

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Part I: Ultra-trace determination of vanadium in lake sediments: a performance comparison using O2, N20, and NH3 as reaction gases in ICP-DRC-MS Thermal ion-molecule reactions, targeting removal of specific spectroscopic interference problems, have become a powerful tool for method development in quadrupole based inductively coupled plasma mass spectrometry (ICP-MS) applications. A study was conducted to develop an accurate method for the determination of vanadium in lake sediment samples by ICP-MS, coupled with a dynamic reaction cell (DRC), using two differenvchemical resolution strategies: a) direct removal of interfering C10+ and b) vanadium oxidation to VO+. The performance of three reaction gases that are suitable for handling vanadium interference in the dynamic reaction cell was systematically studied and evaluated: ammonia for C10+ removal and oxygen and nitrous oxide for oxidation. Although it was able to produce comparable results for vanadium to those using oxygen and nitrous oxide, NH3 did not completely eliminate a matrix effect, caused by the presence of chloride, and required large scale dilutions (and a concomitant increase in variance) when the sample and/or the digestion medium contained large amounts of chloride. Among the three candidate reaction gases at their optimized Eonditions, creation of VO+ with oxygen gas delivered the best analyte sensitivity and the lowest detection limit (2.7 ng L-1). Vanadium results obtained from fourteen lake sediment samples and a certified reference material (CRM031-040-1), using two different analytelinterference separation strategies, suggested that the vanadium mono-oxidation offers advantageous performance over the conventional method using NH3 for ultra-trace vanadium determination by ICP-DRC-MS and can be readily employed in relevant environmental chemistry applications that deal with ultra-trace contaminants.Part II: Validation of a modified oxidation approach for the quantification of total arsenic and selenium in complex environmental matrices Spectroscopic interference problems of arsenic and selenium in ICP-MS practices were investigated in detail. Preliminary literature review suggested that oxygen could serve as an effective candidate reaction gas for analysis of the two elements in dynamic reaction cell coupled ICP-MS. An accurate method was developed for the determination of As and Se in complex environmental samples, based on a series of modifications on an oxidation approach for As and Se previously reported. Rhodium was used as internal standard in this study to help minimize non-spectral interferences such as instrumental drift. Using an oxygen gas flow slightly higher than 0.5 mL min-I, arsenic is converted to 75 AS160+ ion in an efficient manner whereas a potentially interfering ion, 91Zr+, is completely removed. Instead of using the most abundant Se isotope, 80Se, selenium was determined by a second most abundant isotope, 78Se, in the form of 78Se160. Upon careful selection of oxygen gas flow rate and optimization ofRPq value, previous isobaric threats caused by Zr and Mo were reduced to background levels whereas another potential atomic isobar, 96Ru+, became completely harmless to the new selenium analyte. The new method underwent a strict validation procedure where the recovery of a suitable certified reference material was examined and the obtained sample data were compared with those produced by a credible external laboratory who analyzed the same set of samples using a standardized HG-ICP-AES method. The validation results were satisfactory. The resultant limits of detection for arsenic and selenium were 5 ng L-1 and 60 ng L-1, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les fichiers qui accompagnent mon document sont des tableaux supplémentaires réalisés avec Excel (Microsoft Office), dans la version papier du mémoire ces fichiers sont sur un CD-ROM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ce mémoire prend la forme d’une réflexion critique sur le modèle proposé par Hosler afin d’expliquer les taux quantifiés d’étain et d’arsénique dans des objets de statut métalliques Mésoaméricains provenant principalement de l’Occident mésoaméricain et couvrant les deux phases de développement de la métallurgie mésoaméricaine. Ces objets font partie de la collection du Museo Regional de Guadalajara. Plus particulièrement, ce mémoire s’intéresse aux grelots mésoaméricains puisqu’ils représentent un élément important de la métallurgie préhispanique en Mésoamérique. Cette réflexion critique soulève plusieurs considérations techniques, méthodologiques, étymologiques, iconographiques, ethnohistoriques et logiques du modèle de Hosler relativement à la couleur des alliages constituant les grelots mésoaméricains. Les paramètres sur lesquels Hosler base son modèle sont questionnables à plusieurs niveaux. Ainsi, le fait que les niveaux d’arsenic ou d’étain observés dans les alliages cupriques de biens utilitaires sont généralement inférieurs à ceux quantifiés dans les alliages cupriques usités pour la fabrication de biens de statut de la Période 2 pourrait s’expliquer par le fait qu’il s’agit de deux méthodes de fabrication distinctes ayant des contraintes techniques différentes ou que ces artéfacts ont des paramètres et des fonctions distinctes. Les limites de l’association soleil-or, lune-argent y sont également exposées et un chapitre est consacré à la sonorité.