982 resultados para Antenna measurements HFSS: 3D Electromagnetic simulator
Resumo:
This article presents various novel and conventional planar electromagnetic bandgap (EBG)-assisted transmission lines. Both microstrip lines and coplanar waveguides (CPWs) are designed with circular, rectangular, annular, plus-sign and fractal-patterned EBGs and dumbbell-shaped defected ground structure (DGS). The dispersion characteristics and the slow-wave factors of the design are investigated. (c) 2006 Wiley Periodicals, Inc.
Resumo:
An object-oriented finite-difference time-domain (FDTD) simulator has been developed for electromagnetic study and design applications in Magnetic Resonance Imaging. It is aimed to be a complete FDTD model of an MRI system including all high and low-frequency field generating units and electrical models of the patient. The design method is described and MRI-based numerical examples are presented to illustrate the function of the numerical solver, particular emphasis is placed on high field studies.
Resumo:
Simple design formulas for designing ultra wideband (UWB) antennas in the form of complementary planar monopoles are described and their validity is tested using full electromagnetic wave simulations and measurements. Assuming dielectric substrate with relative permittivity of 10.2, the designed antennas feature a small size of 13 mmtimes26 mm. They exhibit a 10 dB return loss bandwidth from 3 to more than 15 GHz accompanied by near omnidirectional characteristics and good radiation efficiency throughout this band
Resumo:
We demonstrate a new approach to in-situ measurement of femtosecond laser pulse induced changes in glass enabling the reconstruction in 3D of the induced complex permittivity modification. The technique can be used to provide single shot and time resolved quantitative measurements with a micron scale spatial resolution.
Resumo:
The major challenge of MEG, the inverse problem, is to estimate the very weak primary neuronal currents from the measurements of extracranial magnetic fields. The non-uniqueness of this inverse solution is compounded by the fact that MEG signals contain large environmental and physiological noise that further complicates the problem. In this paper, we evaluate the effectiveness of magnetic noise cancellation by synthetic gradiometers and the beamformer analysis method of synthetic aperture magnetometry (SAM) for source localisation in the presence of large stimulus-generated noise. We demonstrate that activation of primary somatosensory cortex can be accurately identified using SAM despite the presence of significant stimulus-related magnetic interference. This interference was generated by a contact heat evoked potential stimulator (CHEPS), recently developed for thermal pain research, but which to date has not been used in a MEG environment. We also show that in a reduced shielding environment the use of higher order synthetic gradiometry is sufficient to obtain signal-to-noise ratios (SNRs) that allow for accurate localisation of cortical sensory function.
Resumo:
An experimental method for characterizing the time-resolved phase noise of a fast switching tunable laser is discussed. The method experimentally determines a complementary cumulative distribution function of the laser's differential phase as a function of time after a switching event. A time resolved bit error rate of differential quadrature phase shift keying formatted data, calculated using the phase noise measurements, was fitted to an experimental time-resolved bit error rate measurement using a field programmable gate array, finding a good agreement between the time-resolved bit error rates.
Resumo:
We have used a recently developed x-ray structural microscopy technique to make nondestructive, submicron-resolution measurements of the deformation microstructure below a 100mN maximum load Berkovich nanoindent in single crystal Cu. Direct observations of plastic deformation under the indent were obtained using a ~0.5 µm polychromatic microbeam and diffracted beam depth profiling to make micron-resolution spatially-resolved x-ray Laue diffraction measurements. The local lattice rotations underneath the nanoindent were found to be heterogeneous in nature as revealed by geometrically necessary dislocation (GND) densities determined for positions along lines beneath a flat indent face and under the sharp Berkovich indent blade edges. Measurements of the local rotation-axes and misorientation-angles along these lines are discussed in terms of crystallographic slip systems.
Resumo:
3D geographic information system (GIS) is data and computation intensive in nature. Internet users are usually equipped with low-end personal computers and network connections of limited bandwidth. Data reduction and performance optimization techniques are of critical importance in quality of service (QoS) management for online 3D GIS. In this research, QoS management issues regarding distributed 3D GIS presentation were studied to develop 3D TerraFly, an interactive 3D GIS that supports high quality online terrain visualization and navigation. ^ To tackle the QoS management challenges, multi-resolution rendering model, adaptive level of detail (LOD) control and mesh simplification algorithms were proposed to effectively reduce the terrain model complexity. The rendering model is adaptively decomposed into sub-regions of up-to-three detail levels according to viewing distance and other dynamic quality measurements. The mesh simplification algorithm was designed as a hybrid algorithm that combines edge straightening and quad-tree compression to reduce the mesh complexity by removing geometrically redundant vertices. The main advantage of this mesh simplification algorithm is that grid mesh can be directly processed in parallel without triangulation overhead. Algorithms facilitating remote accessing and distributed processing of volumetric GIS data, such as data replication, directory service, request scheduling, predictive data retrieving and caching were also proposed. ^ A prototype of the proposed 3D TerraFly implemented in this research demonstrates the effectiveness of our proposed QoS management framework in handling interactive online 3D GIS. The system implementation details and future directions of this research are also addressed in this thesis. ^
Resumo:
This dissertation reports experimental studies of nonlinear optical effects manifested by electromagnetically induced transparency (EIT) in cold Rb atoms. The cold Rb atoms are confined in a magneto-optic trap (MOT) obtained with the standard laser cooling and trapping technique. Because of the near zero Doppler shift and a high phase density, the cold Rb sample is well suited for studies of atomic coherence and interference and related applications, and the experiments can be compared quantitatively with theoretical calculations. It is shown that with EIT induced in the multi-level Rb system by laser fields, the linear absorption is suppressed and the nonlinear susceptibility is enhanced, which enables studies of nonlinear optics in the cold atoms with slow photons and at low light intensities. Three independent experiments are described and the experimental results are presented. First, an experimental method that can produce simultaneously co-propagating slow and fast light pulses is discussed and the experimental demonstration is reported. Second, it is shown that in a three-level Rb system coupled by multi-color laser fields, the multi-channel two-photon Raman transitions can be manipulated by the relative phase and frequency of a control laser field. Third, a scheme for all-optical switching near single photon levels is developed. The scheme is based on the phase-dependent multi-photon interference in a coherently coupled four-level system. The phase dependent multi-photon interference is observed and switching of a single light pulse by a control pulse containing ∼20 photons is demonstrated. These experimental studies reveal new phenomena manifested by quantum coherence and interference in cold atoms, contribute to the advancement of fundamental quantum optics and nonlinear optics at ultra-low light intensities, and may lead to the development of new techniques to control quantum states of atoms and photons, which will be useful for applications in quantum measurements and quantum photonic devices.
Resumo:
Antenna design is an iterative process in which structures are analyzed and changed to comply with certain performance parameters required. The classic approach starts with analyzing a "known" structure, obtaining the value of its performance parameter and changing this structure until the "target" value is achieved. This process relies on having an initial structure, which follows some known or "intuitive" patterns already familiar to the designer. The purpose of this research was to develop a method of designing UWB antennas. What is new in this proposal is that the design process is reversed: the designer will start with the target performance parameter and obtain a structure as the result of the design process. This method provided a new way to replicate and optimize existing performance parameters. The base of the method was the use of a Genetic Algorithm (GA) adapted to the format of the chromosome that will be evaluated by the Electromagnetic (EM) solver. For the electromagnetic study we used XFDTD™ program, based in the Finite-Difference Time-Domain technique. The programming portion of the method was created under the MatLab environment, which serves as the interface for converting chromosomes, file formats and transferring of data between the XFDTD™ and GA. A high level of customization had to be written into the code to work with the specific files generated by the XFDTD™ program. Two types of cost functions were evaluated; the first one seeking broadband performance within the UWB band, and the second one searching for curve replication of a reference geometry. The performance of the method was evaluated considering the speed provided by the computer resources used. Balance between accuracy, data file size and speed of execution was achieved by defining parameters in the GA code as well as changing the internal parameters of the XFDTD™ projects. The results showed that the GA produced geometries that were analyzed by the XFDTD™ program and changed following the search criteria until reaching the target value of the cost function. Results also showed how the parameters can change the search criteria and influence the running of the code to provide a variety of geometries.
Resumo:
The Mini-Numerical Electromagnetic Code (MININEC) program, a PC-Compatible version of the powerful NEC program, is used to design a new type of reduced-size antenna. The validity of the program to model simple well-known antennas, such as dipoles and monopoles, is first shown. More complex geometries such as folded dipoles, and meander dipole antennas are also analysed using the program. The final design geometry of a meander folded dipole is characterized with MININEC, yielding results that serve as the basis for the practical construction of the antenna. Finally, the laboratory work with a prototype antenna is described, and practical results are presented.
Resumo:
Results from electromagnetic induction surveys of sea-ice thickness in Storfjorden, Svalbard, reveal large interannual ice-thickness variations in a region which is typically characterized by a reoccurring polynya. The surveys were performed in March 2003, May 2006 and March 2007 with helicopter- and ship-based sensors. The thickness distributions are influenced by sea-ice and atmospheric boundary conditions 2 months prior to the surveys, which are assessed with synthetic aperture radar (SAR) images, regional QuikSCAT backscatter maps and wind information from the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis dataset. Locally formed thin ice from the Storfjorden polynya was frequently observed in 2003 and 2007 (mean thickness 0.55 and 0.37 m, respectively) because these years were characterized by prevailing northeasterly winds. In contrast, the entire fjord was covered with thick external sea ice in 2006 (mean thickness 2.21 m), when ice from the Barents Sea was driven into the fjord by predominantly southerly winds. The modal thickness of this external ice in 2006 increased from 1.2 m in the northern fjord to 2.4 m in the southern fjord, indicating stronger deformation in the southern part. This dynamically thickened ice was even thicker than multi-year ice advected from the central Arctic Ocean in 2003 (mean thickness 1.83 m). The thermodynamic ice thickness of fast ice as boundary condition is investigated with a one-dimensional sea-ice growth model (1DICE) forced with meteorological data from the weather station at the island of Hopen, southeast of Storfjorden. The model results are in good agreement with the modal thicknesses of fast-ice measurements in all years.