855 resultados para Annotation scheme
Resumo:
The current structure of the health and social care system in Northern Ireland has its origins in the Review of Public Administration (RPA) which was initiated by the Northern Ireland Executive in June 2002. The purpose of RPA was to review Northern Ireland’s system of public administration with a view to putting in place a modern, citizen-centred, accountable and high quality system of public administration. The structure was designed to be more streamlined and accountable and aimed at maximising resources for front-line services and ensuring that people have access to high quality health and social care. Another key feature is the placement of public health and wellbeing firmly at the centre of the system, with a greater emphasis on prevention and support for vulnerable people to live independently in the community for as long as possible.
Resumo:
Consultation Response Report From 24 November 2015 until 14 December 2015 the Department ran a targeted consultation in relation to the HMT requirement to introduce modifications to primary legislation as a result of the introduction of the Firefighters’ Pension Scheme (2015) from 1 April 2015.
Resumo:
[EN]This article presents the results obtained in the analysis of irregular microstrip structures using a full wave method of moments scheme. The irregular microstrip structures are divided into rectangular subdomains. The EFIE is discretized an solved over the subdomains using a Galerkin type scheme. Base and weight functions are piece wise sinusoidals (PWS) or triangular. Delta gap voltage generators are used as sources]. Green functions are computed using a freely available library developed by our research group. All the calculations are carried out in the so called ”spatial domain” so there is no need of using regular grids during the discretization process.
Resumo:
Relationship between organisms within an ecosystem is one of the main focuses in the study of ecology and evolution. For instance, host-parasite interactions have long been under close interest of ecology, evolutionary biology and conservation science, due to great variety of strategies and interaction outcomes. The monogenean ecto-parasites consist of a significant portion of flatworms. Gyrodactylus salaris is a monogenean freshwater ecto-parasite of Atlantic salmon (Salmo salar) whose damage can make fish to be prone to further bacterial and fungal infections. G. salaris is the only one parasite whose genome has been studied so far. The RNA-seq data analyzed in this thesis has already been annotated by using LAST. The RNA-seq data was obtained from Illumina sequencing i.e. yielded reads were assembled into 15777 transcripts. Last resulted in annotation of 46% transcripts and remaining were left unknown. This thesis work was started with whole data and annotation process was continued by the use of PANNZER, CDD and InterProScan. This annotation resulted in 56% successfully annotated sequences having parasite specific proteins identified. This thesis represents the first of Monogenean transcriptomic information which gives an important source for further research on this specie. Additionally, comparison of annotation methods interestingly revealed that description and domain based methods perform better than simple similarity search methods. Therefore it is more likely to suggest the use of these tools and databases for functional annotation. These results also emphasize the need for use of multiple methods and databases. It also highlights the need of more genomic information related to G. salaris.
Resumo:
The next generation of vehicles will be equipped with automated Accident Warning Systems (AWSs) capable of warning neighbouring vehicles about hazards that might lead to accidents. The key enabling technology for these systems is the Vehicular Ad-hoc Networks (VANET) but the dynamics of such networks make the crucial timely delivery of warning messages challenging. While most previously attempted implementations have used broadcast-based data dissemination schemes, these do not cope well as data traffic load or network density increases. This problem of sending warning messages in a timely manner is addressed by employing a network coding technique in this thesis. The proposed NETwork COded DissEmination (NETCODE) is a VANET-based AWS responsible for generating and sending warnings to the vehicles on the road. NETCODE offers an XOR-based data dissemination scheme that sends multiple warning in a single transmission and therefore, reduces the total number of transmissions required to send the same number of warnings that broadcast schemes send. Hence, it reduces contention and collisions in the network improving the delivery time of the warnings. The first part of this research (Chapters 3 and 4) asserts that in order to build a warning system, it is needful to ascertain the system requirements, information to be exchanged, and protocols best suited for communication between vehicles. Therefore, a study of these factors along with a review of existing proposals identifying their strength and weakness is carried out. Then an analysis of existing broadcast-based warning is conducted which concludes that although this is the most straightforward scheme, loading can result an effective collapse, resulting in unacceptably long transmission delays. The second part of this research (Chapter 5) proposes the NETCODE design, including the main contribution of this thesis, a pair of encoding and decoding algorithms that makes the use of an XOR-based technique to reduce transmission overheads and thus allows warnings to get delivered in time. The final part of this research (Chapters 6--8) evaluates the performance of the proposed scheme as to how it reduces the number of transmissions in the network in response to growing data traffic load and network density and investigates its capacity to detect potential accidents. The evaluations use a custom-built simulator to model real-world scenarios such as city areas, junctions, roundabouts, motorways and so on. The study shows that the reduction in the number of transmissions helps reduce competition in the network significantly and this allows vehicles to deliver warning messages more rapidly to their neighbours. It also examines the relative performance of NETCODE when handling both sudden event-driven and longer-term periodic messages in diverse scenarios under stress caused by increasing numbers of vehicles and transmissions per vehicle. This work confirms the thesis' primary contention that XOR-based network coding provides a potential solution on which a more efficient AWS data dissemination scheme can be built.
Resumo:
The exocarp, or skin, of fleshy fruit is a specialized tissue that protects the fruit, attracts seed dispersing fruit eaters, and has large economical relevance for fruit quality. Development of the exocarp involves regulated activities of many genes. This research analyzed global gene expression in the exocarp of developing sweet cherry (Prunus avium L., 'Regina'), a fruit crop species with little public genomic resources. A catalog of transcript models (contigs) representing expressed genes was constructed from de novo assembled short complementary DNA (cDNA) sequences generated from developing fruit between flowering and maturity at 14 time points. Expression levels in each sample were estimated for 34 695 contigs from numbers of reads mapping to each contig. Contigs were annotated functionally based on BLAST, gene ontology and InterProScan analyses. Coregulated genes were detected using partitional clustering of expression patterns. The results are discussed with emphasis on genes putatively involved in cuticle deposition, cell wall metabolism and sugar transport. The high temporal resolution of the expression patterns presented here reveals finely tuned developmental specialization of individual members of gene families. Moreover, the de novo assembled sweet cherry fruit transcriptome with 7760 full-length protein coding sequences and over 20 000 other, annotated cDNA sequences together with their developmental expression patterns is expected to accelerate molecular research on this important tree fruit crop.
Resumo:
With the rise of smart phones, lifelogging devices (e.g. Google Glass) and popularity of image sharing websites (e.g. Flickr), users are capturing and sharing every aspect of their life online producing a wealth of visual content. Of these uploaded images, the majority are poorly annotated or exist in complete semantic isolation making the process of building retrieval systems difficult as one must firstly understand the meaning of an image in order to retrieve it. To alleviate this problem, many image sharing websites offer manual annotation tools which allow the user to “tag” their photos, however, these techniques are laborious and as a result have been poorly adopted; Sigurbjörnsson and van Zwol (2008) showed that 64% of images uploaded to Flickr are annotated with < 4 tags. Due to this, an entire body of research has focused on the automatic annotation of images (Hanbury, 2008; Smeulders et al., 2000; Zhang et al., 2012a) where one attempts to bridge the semantic gap between an image’s appearance and meaning e.g. the objects present. Despite two decades of research the semantic gap still largely exists and as a result automatic annotation models often offer unsatisfactory performance for industrial implementation. Further, these techniques can only annotate what they see, thus ignoring the “bigger picture” surrounding an image (e.g. its location, the event, the people present etc). Much work has therefore focused on building photo tag recommendation (PTR) methods which aid the user in the annotation process by suggesting tags related to those already present. These works have mainly focused on computing relationships between tags based on historical images e.g. that NY and timessquare co-exist in many images and are therefore highly correlated. However, tags are inherently noisy, sparse and ill-defined often resulting in poor PTR accuracy e.g. does NY refer to New York or New Year? This thesis proposes the exploitation of an image’s context which, unlike textual evidences, is always present, in order to alleviate this ambiguity in the tag recommendation process. Specifically we exploit the “what, who, where, when and how” of the image capture process in order to complement textual evidences in various photo tag recommendation and retrieval scenarios. In part II, we combine text, content-based (e.g. # of faces present) and contextual (e.g. day-of-the-week taken) signals for tag recommendation purposes, achieving up to a 75% improvement to precision@5 in comparison to a text-only TF-IDF baseline. We then consider external knowledge sources (i.e. Wikipedia & Twitter) as an alternative to (slower moving) Flickr in order to build recommendation models on, showing that similar accuracy could be achieved on these faster moving, yet entirely textual, datasets. In part II, we also highlight the merits of diversifying tag recommendation lists before discussing at length various problems with existing automatic image annotation and photo tag recommendation evaluation collections. In part III, we propose three new image retrieval scenarios, namely “visual event summarisation”, “image popularity prediction” and “lifelog summarisation”. In the first scenario, we attempt to produce a rank of relevant and diverse images for various news events by (i) removing irrelevant images such memes and visual duplicates (ii) before semantically clustering images based on the tweets in which they were originally posted. Using this approach, we were able to achieve over 50% precision for images in the top 5 ranks. In the second retrieval scenario, we show that by combining contextual and content-based features from images, we are able to predict if it will become “popular” (or not) with 74% accuracy, using an SVM classifier. Finally, in chapter 9 we employ blur detection and perceptual-hash clustering in order to remove noisy images from lifelogs, before combining visual and geo-temporal signals in order to capture a user’s “key moments” within their day. We believe that the results of this thesis show an important step towards building effective image retrieval models when there lacks sufficient textual content (i.e. a cold start).
Resumo:
Transcription activator-like effectors (TALEs) are virulence factors, produced by the bacterial plant-pathogen Xanthomonas, that function as gene activators inside plant cells. Although the contribution of individual TALEs to infectivity has been shown, the specific roles of most TALEs, and the overall TALE diversity in Xanthomonas spp. is not known. TALEs possess a highly repetitive DNA-binding domain, which is notoriously difficult to sequence. Here, we describe an improved method for characterizing TALE genes by the use of PacBio sequencing. We present 'AnnoTALE', a suite of applications for the analysis and annotation of TALE genes from Xanthomonas genomes, and for grouping similar TALEs into classes. Based on these classes, we propose a unified nomenclature for Xanthomonas TALEs that reveals similarities pointing to related functionalities. This new classification enables us to compare related TALEs and to identify base substitutions responsible for the evolution of TALE specificities. © 2016, Nature Publishing Group. All rights reserved.
Resumo:
Annotation Pro - a description of techniques, methods implemented in the tool, as well as the list of all built in functionalities and features of the user interface, and usage tips.
Resumo:
Automatic video segmentation plays a vital role in sports videos annotation. This paper presents a fully automatic and computationally efficient algorithm for analysis of sports videos. Various methods of automatic shot boundary detection have been proposed to perform automatic video segmentation. These investigations mainly concentrate on detecting fades and dissolves for fast processing of the entire video scene without providing any additional feedback on object relativity within the shots. The goal of the proposed method is to identify regions that perform certain activities in a scene. The model uses some low-level feature video processing algorithms to extract the shot boundaries from a video scene and to identify dominant colours within these boundaries. An object classification method is used for clustering the seed distributions of the dominant colours to homogeneous regions. Using a simple tracking method a classification of these regions to active or static is performed. The efficiency of the proposed framework is demonstrated over a standard video benchmark with numerous types of sport events and the experimental results show that our algorithm can be used with high accuracy for automatic annotation of active regions for sport videos.
Resumo:
This paper presents a semi-parametric Algorithm for parsing football video structures. The approach works on a two interleaved based process that closely collaborate towards a common goal. The core part of the proposed method focus perform a fast automatic football video annotation by looking at the enhance entropy variance within a series of shot frames. The entropy is extracted on the Hue parameter from the HSV color system, not as a global feature but in spatial domain to identify regions within a shot that will characterize a certain activity within the shot period. The second part of the algorithm works towards the identification of dominant color regions that could represent players and playfield for further activity recognition. Experimental Results shows that the proposed football video segmentation algorithm performs with high accuracy.
Resumo:
A prepayment scheme for health through the National Health Insurance Scheme (NHIS) was commenced in Nigeria about ten years ago. Nigeria operates a federal system of government. Sub- national levels possess a high degree of autonomy in a number of sectors including health. It is important to assess the level of coverage of the scheme among the formal sector workers in Nigeria as a proxy to gauge the extent of coverage of the scheme and derive suitable lessons that could be used in its expansion. This is a cross-sectional, descriptive survey carried out among formal sector workers in Ilorin Kwara State, Nigeria. A stratified sampling technique was used to select study participants. A self-administered questionnaire was used to collect data from respondents. Data was analysed with the SPSS. Ethical approval to conduct the study was obtained from the Bowen University Teaching Hospital Research Ethics Committee. A total of 370 people participated in the study. Majority, (78.9%) of the respondents were aware of the NHIS, however only 13.5 % paid for health care services through the NHIS. Logistic regression analysis shows that respondents with post-secondary education (OR = 9.032, CI = 2.562 – 31.847, p = 0.001) and in federal civil service (OR = 2.679, CI = 1.036 – 6.929, p = 0.042) were over nine and three times more likely to be aware of the scheme than others. Coverage of the scheme among the respondents was unimpressive. A lot still need to be done to fast-track the expansion of the scheme among this sector of the population.