899 resultados para Anatomy, Surgical and topographical.
Resumo:
Background: The aim of this work was to study the new bone tissue formation after bone morphogenetic protein type 2 (rhBMP-2) and P-1 application, using 5 and 10 mu g of each, combined to a material carrier, in critical bone defects. Methods: It was used 70 Wistar rats (male, similar to 250 g) that were divided in 10 groups with seven animals on each. Groups are the following: critical bone defect only, pure monoolein gel, 5 mu g of pure P-1, 5 mu g of pure rhBMP-2, 5 mu g of P-1/monoolein gel, 5 mu g of rhBMP-2/monoolein gel, 10 mu g of pure P-1, 10 mu g of pure rhBMP-2, 10 mu g of P-1/monoolein gel, 10 mu g of rhBMP-2/monoolein gel. Animals were sacrificed after 4 weeks of the surgical procedure and the bone samples were submitted to histological, histomorphometrical, and immunohistochemical evaluations. Results: Animals treated with pure P-1 protein, in both situations with 5 mu g and 10 mu g, had no significant difference (P > 0.05) for new bone formation; other groups treated with 10 mu g were statistically significant (P < 0.05) among themselves and when compared with groups in which it was inserted the monoolein gel or critical bone defect only (P < 0.05). In the group involving the 10 mu g rhBMP-2/monoolein gel association, it was observed an extensive bone formation, even when compared with the same treatment without the gel carrier. Conclusion: Using this experimental animal model, more new bone tissue was found when it was inserted the rhBMP-2, especially when this protein was combined to the vehicle, and this process seems to be dose dependent. Microsc. Res. Tech., 2011.(c) 2011 Wiley Periodicals, Inc.
Resumo:
Neritina zebra is a common brackish water gastropod living on muddy bottoms with poorly known morphological characters. The morphology, including the variety of colour and pattern of shells, and the anatomy are described. We mainly analyzed the animals collected in the estuary of the Ceara river, Ceara, Brazil, from "Parque Estadual do rio Coco", and specimens from other places deposited in institutional collections, from French Guyana (topotypes) to Sao Paulo. A complete anatomical description is performed, including illustration and discussion ninth concerned to systematics. Amongst the more important anatomical data are: heart diotocardian; kidneys solid; anterior esophagus with pair of ventral esophageal pouches; odontophore with 4 cartilages and 2 horizontal muscles (m6, m6a); males with penis dorsal-right to snout, bearing a terminal papilla; pallial oviduct triaulic, possessing 3 pallial apertures.
Resumo:
Objective: To characterize optic nerve head (ONH) anatomy related to the clinical optic disc margin with spectral domain-optical coherence tomography (SD-OCT). Design: Cross-sectional study. Participants: Patients with open-angle glaucoma with focal, diffuse, and sclerotic optic disc damage, and age-matched normal controls. Methods: High-resolution radial SD-OCT B-scans centered on the ONH were analyzed at each clock hour. For each scan, the border tissue of Elschnig was classified for obliqueness (internally oblique, externally oblique, or nonoblique) and the presence of Bruch's membrane overhanging the border tissue. Optic disc stereophotographs were co-localized to SD-OCT data with customized software. The frequency with which the disc margin identified in stereophotographs coincided with (1) Bruch's membrane opening (BMO), defined as the innermost edge of Bruch's membrane; (2) Bruch's membrane/border tissue, defined as any aspect of either outside BMO or border tissue; or (3) border tissue, defined as any aspect of border tissue alone, in the B-scans was computed at each clock hour. Main Outcome Measures: The SD-OCT structures coinciding with the disc margin in stereophotographs. Results: There were 30 patients (10 with each type of disc damage) and 10 controls, with a median (range) age of 68.1 (42-86) years and 63.5 (42-77) years, respectively. Although 28 patients (93%) had 2 or more border tissue configurations, the most predominant one was internally oblique, primarily superiorly and nasally, frequently with Bruch's membrane overhang. Externally oblique border tissue was less frequent, observed mostly inferiorly and temporally. In controls, there was predominantly internally oblique configuration around the disc. Although the configurations were not statistically different between patients and controls, they were among the 3 glaucoma groups. At most locations, the SD-OCT structure most frequently identified as the disc margin was some aspect of Bruch's membrane and border tissue external to BMO. Bruch's membrane overhang was regionally present in the majority of patients with glaucoma and controls; however, in most cases it was not visible as the disc margin. Conclusions: The clinically perceived disc margin is most likely not the innermost edge of Bruch's membrane detected by SD-OCT. These findings have important implications for the automated detection of the disc margin and estimates of the neuroretinal rim. Financial Disclosure(s): Proprietary or commercial disclosure may be found after the references. Ophthalmology 2012;119:738-747 (C) 2012 by the American Academy of Ophthalmology.
Resumo:
Purpose: Refractory frontal lobe epilepsy (FLE) remains one of the most challenging surgically remediable epilepsy syndromes. Nevertheless, definition of independent predictors and predictive models of postsurgical seizure outcome remains poorly explored in FLE. Methods: We retrospectively analyzed data from 70 consecutive patients with refractory FLE submitted to surgical treatment at our center from July 1994 to December 2006. Univariate results were submitted to logistic regression models and Cox proportional hazards regression to identify isolated risk factors for poor surgical results and to construct predictive models for surgical outcome in FLE. Results: From 70 patients submitted to surgery, 45 patients (64%) had favorable outcome and 37 (47%) became seizure free. Isolated risk factors for poor surgical outcome are expressed in hazard ratio (H.R.) and were time of epilepsy (H.R.=4.2; 95% C.I.=.1.5-11.7; p=0.006), ictal EEG recruiting rhythm (H.R. = 2.9; 95% C.I. = 1.1-7.7; p=0.033); normal MRI (H.R. = 4.8; 95% C.I. = 1.4-16.6; p = 0.012), and MRI with lesion involving eloquent cortex (H.R. = 3.8; 95% C.I. = 1.2-12.0; p = 0.021). Based on these variables and using a logistic regression model we constructed a model that correctly predicted long-term surgical outcome in up to 80% of patients. Conclusion: Among independent risk factors for postsurgical seizure outcome, epilepsy duration is a potentially modifiable factor that could impact surgical outcome in FLE. Early diagnosis, presence of an MRI lesion not involving eloquent cortex, and ictal EEG without recruited rhythm independently predicted favorable outcome in this series. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
PURPOSE: To evaluate the sulcus anatomy and possible correlations between sulcus diameter and white-to-white (WTW) diameter in pseudophakic eyes, data that may be important in the stability of add-on intraocular lenses (IOLs). SETTING: University Eye Hospital, Tuebingen, Germany. DESIGN: Case series. METHODS: In pseudophakic eyes, the axial length (AL) and horizontal WTW were measured by the IOLMaster device. Cross-sectional images were obtained with a 50 MHz ultrasound biomicroscope on the 4 meridians: vertical, horizontal (180 degrees), temporal oblique, and nasal oblique. Sulcus-to-sulcus (STS), angle-to-angle (ATA), and sclera-to-sclera (ScTSc) diameters were measured. The IOL optic diameter (6.0 mm) served as a control. To test reliability, optic measurements were repeated 5 times in a subset of eyes. RESULTS: The vertical ATA and STS diameters were statistically significantly larger than the horizontal diameter (P=.0328 and P=.0216, respectively). There was no statistically significant difference in ScTSc diameters. A weak correlation was found between WTW and horizontal ATA (r = 0.5766, P<.0001) and between WTW and horizontal STS (r = 0.5040, P=.0002). No correlation was found between WTW and horizontal ScTSc (r = 0.2217, P=.1217). CONCLUSIONS: The sulcus anatomy had a vertical oval shape with the vertical meridian being the largest, but it also had variation in the direction of the largest meridian. The WTW measurements showed a weak correlation with STS. In pseudophakic eyes, Soemmerring ring or a bulky haptic may affect the ciliary sulcus anatomy.
Resumo:
Objective. The aim of this study was to evaluate the need for antibiotic prescription in third molar surgery. Study design. A double-blind randomized study was carried out with 71 patients from CODONT (Dentistry Center of the Police of Sao Paulo). Amoxicillin, clindamycin, or no medication was administered for 7 days immediately after surgery. The participants evaluated the presence of pain, edema, interincisal distance (ID), presence of infection, Pell and Gregory classification, rescue analgesia, osteotomy, and odontosection. Results. There was no difference (P < .05) between antibiotics and control over the surgery duration, dose, visual analog scale (VAS), ID, and edema, yet significant differences were seen over time for VAS, edema, and ID. Conclusions. Antibiotic prescription should not be indicated in all clinical conditions, yet it is necessary to correctly evaluate factors such as systemic condition of the patient, skill of the operator, and contamination of the surgical environment. (Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 114(suppl 5):S26-S31)
Resumo:
Dentigerous cyst (DC) is one of the most common odontogenic cysts of the jaws and rarely recurs. On the other hand, keratocystic odontogenic tumor (KCOT), formerly known as odontogenic keratocyst (OKC), is considered a benign unicystic or multicystic intraosseous neoplasm and one of the most aggressive odontogenic lesions presenting relatively high recurrence rate and a tendency to invade adjacent tissue. Two cases of these odontogenic lesions occurring in children are presented. They were very similar in clinical and radiographic characteristics, and both were treated by marsupialization. The treatment was chosen in order to preserve the associated permanent teeth with complementary orthodontic treatment to direct eruption of the associated permanent teeth. At 7-years of follow-up, none of the cases showed recurrence.
Resumo:
Abstract Introduction Hydronephrosis, reflux and renal failure are serious complications that occur in patients with neurogenic bladder associated with myelomeningocele. When the bladder compliance is lost, it is imperative to carry out surgery aimed at reducing bladder storage pressure. An ileocystoplasty, and for patients not suitable for intermittent catheterization, using the Mitrofanoff principle to form a continent stoma and the subsequent closure of the bladder neck, can be used. We report here, for the first time to the best of our knowledge, an association between two previously described techniques (the Mitrofanoff principle and the technique of Monti), that can solve the problem of a short appendix in obese patients. Case presentation A 33-year-old male Caucasian patient with myelomeningocele and neurogenic bladder developed low bladder compliance (4.0 mL/cm H2O) while still maintaining normal renal function. A bladder augmentation (ileocystoplasty) with continent derivation principle (Mitrofanoff) was performed. During surgery, we found that the patient's appendix was too short and was insufficient to reach the skin. We decided to make an association between the Mitrofanoff conduit and the ileal technique of Monti, through which we performed an anastomosis of the distal stump of the appendix to the bladder (with an antireflux valve). Later, the proximal stump of the appendix was anastomosed to an ileal segment of 2.0 cm that was open longitudinally and reconfigured transversally (Monti technique), modeled by a 12-Fr urethral catheter, and finally, the distal stump was sutured at the patient's navel. After the procedure, a suprapubic cystostomy (22 Fr) and a Foley catheter (10 Fr) through the continent conduit were left in place. The patient had recovered well and was discharged on the tenth day after surgery. He remained with the Foley catheter (through the conduit) for 21 days and cystostomy for 30 days. Six months after surgery he was continent with good bladder compliance without reflux and fully adapted to catheterization through the navel. Conclusion The unpublished association between the Mitrofanoff and Monti techniques is feasible and a very useful alternative in urologic cases of derivation continent in which the ileocecal appendix is too short to reach the skin (i.e., in obese patients).
Resumo:
OBJECTIVE: To evaluate the results of ileal J-pouch anal anastomosis in ulcerative colitis and familial adenomatous polyposis. METHOD: Retrospective analysis of medical records of 49 patients submitted to ileal J-pouch anal anastomosis. RESULTS: Ulcerative colitis was diagnosed in 65% and familial adenomatous polyposis in 34%. Mean age was 39.5 years. 43% were male. Among familial adenomatous polyposis, 61% were diagnosed with colorectal cancer. Thirty-one percent of patients with ulcerative colitis was submitted to a previous surgical approach and 21% of these had toxic megacolon. Average hospital stay was 10 days. Post-operative complications occurred in 50% of patients with ulcerative colitis and 29.4% with familial adenomatous polyposis. Intestinal diversion was performed in 100% of ulcerative colitis and 88% of familial adenomatous polyposis. Pouchitis occurred in eight cases (seven ulcerative colitis and one FAP), requiring excision of the pouch in three ulcerative colitis. Mortality rate was 7.6%: two cases of carcinoma on the pouch and two post-operative complications. Late post-operative complications occurred in 22.4%: six familial adenomatous polyposis and five ulcerative colitis). Two patients had erectile dysfunction, and one retrograde ejaculation. One patient with severe perineal dermatitis was submitted to excision of the pouch. Incontinence occurred in four patients and two reported soil. Mean bowel movement was five times a day. CONCLUSION: Ileal J-pouch anal anastomosis is a safe surgery with acceptable morbidity and good functional results, if well indicated and performed in referral centers.
Resumo:
[EN] OBJECTIVES: To assess the usefulness of clinical findings, nerve conduction studies and ultrasonography performed by a rheumatologist to predict success in patients with idiopathic carpal tunnel syndrome (CTS) undergoing median nerve release. METHODS: Ninety consecutive patients with CTS (112 wrists) completed a specific CTS questionnaire and underwent physical examination and nerve conduction studies. Ultrasound examination was performed by a rheumatologist who was blind to any patient's data. Outcome variables were improvement >25% in symptoms of the CTS questionnaire and patient's overall satisfaction (5-point Likert scale) at 3 months postoperatively. Success was defined as improvement in both outcome variables. Receiver operating characteristics (ROC) curves and logistic regression analyses were used to assess the best predictive combination of preoperative findings. RESULTS: Success was achieved in 63% of the operated wrists. Utility parameters and area under the ROC curve (AUC) for individual findings was poor, ranging from 0.481 of the nerve conduction study to 0.634 of the cross-sectional area at tunnel outlet. Logistic regression identified the preoperative US parameters as the best predictive variables for success after 3 months. The best predictive combination (AUC=0.708) included a negative Phalen maneuver, plus absence of thenar atrophy, plus less than moderately abnormalities on nerve conduction studies plus a large maximal cross-sectional area along the tunnel by ultrasonography. CONCLUSION: Although cross-sectional area of the median nerve was the only predictor of success after three months of surgical release, isolated preoperative findings are not reliable predictors of success in patients with idiopathic CTS. A combination of findings that include ultrasound improves prediction.
Resumo:
Primary stability of stems in cementless total hip replacements is recognized to play a critical role for long-term survival and thus for the success of the overall surgical procedure. In Literature, several studies addressed this important issue. Different approaches have been explored aiming to evaluate the extent of stability achieved during surgery. Some of these are in-vitro protocols while other tools are coinceived for the post-operative assessment of prosthesis migration relative to the host bone. In vitro protocols reported in the literature are not exportable to the operating room. Anyway most of them show a good overall accuracy. The RSA, EBRA and the radiographic analysis are currently used to check the healing process of the implanted femur at different follow-ups, evaluating implant migration, occurance of bone resorption or osteolysis at the interface. These methods are important for follow up and clinical study but do not assist the surgeon during implantation. At the time I started my Ph.D Study in Bioengineering, only one study had been undertaken to measure stability intra-operatively. No follow-up was presented to describe further results obtained with that device. In this scenario, it was believed that an instrument that could measure intra-operatively the stability achieved by an implanted stem would consistently improve the rate of success. This instrument should be accurate and should give to the surgeon during implantation a quick answer concerning the stability of the implanted stem. With this aim, an intra-operative device was designed, developed and validated. The device is meant to help the surgeon to decide how much to press-fit the implant. It is essentially made of a torsional load cell, able to measure the extent of torque applied by the surgeon to test primary stability, an angular sensor that measure the relative angular displacement between stem and femur, a rigid connector that enable connecting the device to the stem, and all the electronics for signals conditioning. The device was successfully validated in-vitro, showing a good overall accuracy in discriminating stable from unstable implants. Repeatability tests showed that the device was reliable. A calibration procedure was then performed in order to convert the angular readout into a linear displacement measurement, which is an information clinically relevant and simple to read in real-time by the surgeon. The second study reported in my thesis, concerns the evaluation of the possibility to have predictive information regarding the primary stability of a cementless stem, by measuring the micromotion of the last rasp used by the surgeon to prepare the femoral canal. This information would be really useful to the surgeon, who could check prior to the implantation process if the planned stem size can achieve a sufficient degree of primary stability, under optimal press fitting conditions. An intra-operative tool was developed to this aim. It was derived from a previously validated device, which was adapted for the specific purpose. The device is able to measure the relative micromotion between the femur and the rasp, when a torsional load is applied. An in-vitro protocol was developed and validated on both composite and cadaveric specimens. High correlation was observed between one of the parameters extracted form the acquisitions made on the rasp and the stability of the corresponding stem, when optimally press-fitted by the surgeon. After tuning in-vitro the protocol as in a closed loop, verification was made on two hip patients, confirming the results obtained in-vitro and highlighting the independence of the rasp indicator from the bone quality, anatomy and preserving conditions of the tested specimens, and from the sharpening of the rasp blades. The third study is related to an approach that have been recently explored in the orthopaedic community, but that was already in use in other scientific fields. It is based on the vibration analysis technique. This method has been successfully used to investigate the mechanical properties of the bone and its application to evaluate the extent of fixation of dental implants has been explored, even if its validity in this field is still under discussion. Several studies have been published recently on the stability assessment of hip implants by vibration analysis. The aim of the reported study was to develop and validate a prototype device based on the vibration analysis technique to measure intra-operatively the extent of implant stability. The expected advantages of a vibration-based device are easier clinical use, smaller dimensions and minor overall cost with respect to other devices based on direct micromotion measurement. The prototype developed consists of a piezoelectric exciter connected to the stem and an accelerometer attached to the femur. Preliminary tests were performed on four composite femurs implanted with a conventional stem. The results showed that the input signal was repeatable and the output could be recorded accurately. The fourth study concerns the application of the device based on the vibration analysis technique to several cases, considering both composite and cadaveric specimens. Different degrees of bone quality were tested, as well as different femur anatomies and several levels of press-fitting were considered. The aim of the study was to verify if it is possible to discriminate between stable and quasi-stable implants, because this is the most challenging detection for the surgeon in the operation room. Moreover, it was possible to validate the measurement protocol by comparing the results of the acquisitions made with the vibration-based tool to two reference measurements made by means of a validated technique, and a validated device. The results highlighted that the most sensitive parameter to stability is the shift in resonance frequency of the stem-bone system, showing high correlation with residual micromotion on all the tested specimens. Thus, it seems possible to discriminate between many levels of stability, from the grossly loosened implant, through the quasi-stable implants, to the definitely stable one. Finally, an additional study was performed on a different type of hip prosthesis, which has recently gained great interest thus becoming fairly popular in some countries in the last few years: the hip resurfacing prosthesis. The study was motivated by the following rationale: although bone-prosthesis micromotion is known to influence the stability of total hip replacement, its effect on the outcome of resurfacing implants has not been investigated in-vitro yet, but only clinically. Thus the work was aimed at verifying if it was possible to apply to the resurfacing prosthesis one of the intraoperative devices just validated for the measurement of the micromotion in the resurfacing implants. To do that, a preliminary study was performed in order to evaluate the extent of migration and the typical elastic movement for an epiphyseal prosthesis. An in-vitro procedure was developed to measure micromotions of resurfacing implants. This included a set of in-vitro loading scenarios that covers the range of directions covered by hip resultant forces in the most typical motor-tasks. The applicability of the protocol was assessed on two different commercial designs and on different head sizes. The repeatability and reproducibility were excellent (comparable to the best previously published protocols for standard cemented hip stems). Results showed that the procedure is accurate enough to detect micromotions of the order of few microns. The protocol proposed was thus completely validated. The results of the study demonstrated that the application of an intra-operative device to the resurfacing implants is not necessary, as the typical micromovement associated to this type of prosthesis could be considered negligible and thus not critical for the stabilization process. Concluding, four intra-operative tools have been developed and fully validated during these three years of research activity. The use in the clinical setting was tested for one of the devices, which could be used right now by the surgeon to evaluate the degree of stability achieved through the press-fitting procedure. The tool adapted to be used on the rasp was a good predictor of the stability of the stem. Thus it could be useful for the surgeon while checking if the pre-operative planning was correct. The device based on the vibration technique showed great accuracy, small dimensions, and thus has a great potential to become an instrument appreciated by the surgeon. It still need a clinical evaluation, and must be industrialized as well. The in-vitro tool worked very well, and can be applied for assessing resurfacing implants pre-clinically.
Resumo:
Background. The surgical treatment of dysfunctional hips is a severe condition for the patient and a costly therapy for the public health. Hip resurfacing techniques seem to hold the promise of various advantages over traditional THR, with particular attention to young and active patients. Although the lesson provided in the past by many branches of engineering is that success in designing competitive products can be achieved only by predicting the possible scenario of failure, to date the understanding of the implant quality is poorly pre-clinically addressed. Thus revision is the only delayed and reliable end point for assessment. The aim of the present work was to model the musculoskeletal system so as to develop a protocol for predicting failure of hip resurfacing prosthesis. Methods. Preliminary studies validated the technique for the generation of subject specific finite element (FE) models of long bones from Computed Thomography data. The proposed protocol consisted in the numerical analysis of the prosthesis biomechanics by deterministic and statistic studies so as to assess the risk of biomechanical failure on the different operative conditions the implant might face in a population of interest during various activities of daily living. Physiological conditions were defined including the variability of the anatomy, bone densitometry, surgery uncertainties and published boundary conditions at the hip. The protocol was tested by analysing a successful design on the market and a new prototype of a resurfacing prosthesis. Results. The intrinsic accuracy of models on bone stress predictions (RMSE < 10%) was aligned to the current state of the art in this field. The accuracy of prediction on the bone-prosthesis contact mechanics was also excellent (< 0.001 mm). The sensitivity of models prediction to uncertainties on modelling parameter was found below 8.4%. The analysis of the successful design resulted in a very good agreement with published retrospective studies. The geometry optimisation of the new prototype lead to a final design with a low risk of failure. The statistical analysis confirmed the minimal risk of the optimised design over the entire population of interest. The performances of the optimised design showed a significant improvement with respect to the first prototype (+35%). Limitations. On the authors opinion the major limitation of this study is on boundary conditions. The muscular forces and the hip joint reaction were derived from the few data available in the literature, which can be considered significant but hardly representative of the entire variability of boundary conditions the implant might face over the patients population. This moved the focus of the research on modelling the musculoskeletal system; the ongoing activity is to develop subject-specific musculoskeletal models of the lower limb from medical images. Conclusions. The developed protocol was able to accurately predict known clinical outcomes when applied to a well-established device and, to support the design optimisation phase providing important information on critical characteristics of the patients when applied to a new prosthesis. The presented approach does have a relevant generality that would allow the extension of the protocol to a large set of orthopaedic scenarios with minor changes. Hence, a failure mode analysis criterion can be considered a suitable tool in developing new orthopaedic devices.
Resumo:
In case of severe osteoarthritis at the knee causing pain, deformity, and loss of stability and mobility, the clinicians consider that the substitution of these surfaces by means of joint prostheses. The objectives to be pursued by this surgery are: complete pain elimination, restoration of the normal physiological mobility and joint stability, correction of all deformities and, thus, of limping. The knee surgical navigation systems have bee developed in computer-aided surgery in order to improve the surgical final outcome in total knee arthroplasty. These systems provide the surgeon with quantitative and real-time information about each surgical action, like bone cut executions and prosthesis component alignment, by mean of tracking tools rigidly fixed onto the femur and the tibia. Nevertheless, there is still a margin of error due to the incorrect surgical procedures and to the still limited number of kinematic information provided by the current systems. Particularly, patello-femoral joint kinematics is not considered in knee surgical navigation. It is also unclear and, thus, a source of misunderstanding, what the most appropriate methodology is to study the patellar motion. In addition, also the knee ligamentous apparatus is superficially considered in navigated total knee arthroplasty, without taking into account how their physiological behavior is altered by this surgery. The aim of the present research work was to provide new functional and biomechanical assessments for the improvement of the surgical navigation systems for joint replacement in the human lower limb. This was mainly realized by means of the identification and development of new techniques that allow a thorough comprehension of the functioning of the knee joint, with particular attention to the patello-femoral joint and to the main knee soft tissues. A knee surgical navigation system with active markers was used in all research activities presented in this research work. Particularly, preliminary test were performed in order to assess the system accuracy and the robustness of a number of navigation procedures. Four studies were performed in-vivo on patients requiring total knee arthroplasty and randomly implanted by means of traditional and navigated procedures in order to check for the real efficacy of the latter with respect to the former. In order to cope with assessment of patello-femoral joint kinematics in the intact and replaced knees, twenty in-vitro tests were performed by using a prototypal tracking tool also for the patella. In addition to standard anatomical and articular recommendations, original proposals for defining the patellar anatomical-based reference frame and for studying the patello-femoral joint kinematics were reported and used in these tests. These definitions were applied to two further in-vitro tests in which, for the first time, also the implant of patellar component insert was fully navigated. In addition, an original technique to analyze the main knee soft tissues by means of anatomical-based fiber mappings was also reported and used in the same tests. The preliminary instrumental tests revealed a system accuracy within the millimeter and a good inter- and intra-observer repeatability in defining all anatomical reference frames. In in-vivo studies, the general alignments of femoral and tibial prosthesis components and of the lower limb mechanical axis, as measured on radiographs, was more satisfactory, i.e. within ±3°, in those patient in which total knee arthroplasty was performed by navigated procedures. As for in-vitro tests, consistent patello-femoral joint kinematic patterns were observed over specimens throughout the knee flexion arc. Generally, the physiological intact knee patellar motion was not restored after the implant. This restoration was successfully achieved in the two further tests where all component implants, included the patellar insert, were fully navigated, i.e. by means of intra-operative assessment of also patellar component positioning and general tibio-femoral and patello-femoral joint assessment. The tests for assessing the behavior of the main knee ligaments revealed the complexity of the latter and the different functional roles played by the several sub-bundles compounding each ligament. Also in this case, total knee arthroplasty altered the physiological behavior of these knee soft tissues. These results reveal in-vitro the relevance and the feasibility of the applications of new techniques for accurate knee soft tissues monitoring, patellar tracking assessment and navigated patellar resurfacing intra-operatively in the contest of the most modern operative techniques. This present research work gives a contribution to the much controversial knowledge on the normal and replaced of knee kinematics by testing the reported new methodologies. The consistence of these results provides fundamental information for the comprehension and improvements of knee orthopedic treatments. In the future, the reported new techniques can be safely applied in-vivo and also adopted in other joint replacements.
Resumo:
Articular cartilage lesions, with their inherent limited healing potential, are hard to treat and remain a challenging problem for orthopedic surgeons. Despite the development of several treatment strategies, the real potential of each procedure in terms of clinical benefit and effects on the joint degeneration processes is not clear. Aim of this PhD project was to evaluate the results, both in terms of clinical and imaging improvement, of new promising procedures developed to address the challenging cartilage pathology. Several studies have been followed in parallel and completed over the 3-year PhD, and are reported in detail in the following pages. In particular, the studies have been focused on the evaluation of the treatment indications of a scaffold based autologous chondrocyte implantation procedure, documenting its results for the classic indication of focal traumatic lesions, as well as its use for the treatment of more challenging patients, older, with degenerative lesions, or even as salvage procedure for more advanced stages of articular degeneration. The second field of study involved the analysis of the results obtained treating lesions of the articular surface with a new biomimetic osteochondral scaffold, which showed promise for the treatment of defects where the entire osteochondral unit is involved. Finally, a new minimally invasive procedure based on the use of growth factors derived from autologous platelets has been explored, showing results and underlining indicatios for the treatment of cartilage lesions and different stages of joint degeneration. These studies shed some light on the potential of the evaluated procedures, underlining good results as well as limits, they give some indications on the most appropriate candidates for their application, and document the current knowledge on cartilage treatment procedures suggesting the limitations that need to be addressed by future studies to improve the management of cartilage lesions.
Resumo:
Every year, thousand of surgical treatments are performed in order to fix up or completely substitute, where possible, organs or tissues affected by degenerative diseases. Patients with these kind of illnesses stay long times waiting for a donor that could replace, in a short time, the damaged organ or the tissue. The lack of biological alternates, related to conventional surgical treatments as autografts, allografts, e xenografts, led the researchers belonging to different areas to collaborate to find out innovative solutions. This research brought to a new discipline able to merge molecular biology, biomaterial, engineering, biomechanics and, recently, design and architecture knowledges. This discipline is named Tissue Engineering (TE) and it represents a step forward towards the substitutive or regenerative medicine. One of the major challenge of the TE is to design and develop, using a biomimetic approach, an artificial 3D anatomy scaffold, suitable for cells adhesion that are able to proliferate and differentiate themselves as consequence of the biological and biophysical stimulus offered by the specific tissue to be replaced. Nowadays, powerful instruments allow to perform analysis day by day more accurateand defined on patients that need more precise diagnosis and treatments.Starting from patient specific information provided by TC (Computed Tomography) microCT and MRI(Magnetic Resonance Imaging), an image-based approach can be performed in order to reconstruct the site to be replaced. With the aid of the recent Additive Manufacturing techniques that allow to print tridimensional objects with sub millimetric precision, it is now possible to practice an almost complete control of the parametrical characteristics of the scaffold: this is the way to achieve a correct cellular regeneration. In this work, we focalize the attention on a branch of TE known as Bone TE, whose the bone is main subject. Bone TE combines osteoconductive and morphological aspects of the scaffold, whose main properties are pore diameter, structure porosity and interconnectivity. The realization of the ideal values of these parameters represents the main goal of this work: here we'll a create simple and interactive biomimetic design process based on 3D CAD modeling and generative algorithmsthat provide a way to control the main properties and to create a structure morphologically similar to the cancellous bone. Two different typologies of scaffold will be compared: the first is based on Triply Periodic MinimalSurface (T.P.M.S.) whose basic crystalline geometries are nowadays used for Bone TE scaffolding; the second is based on using Voronoi's diagrams and they are more often used in the design of decorations and jewellery for their capacity to decompose and tasselate a volumetric space using an heterogeneous spatial distribution (often frequent in nature). In this work, we will show how to manipulate the main properties (pore diameter, structure porosity and interconnectivity) of the design TE oriented scaffolding using the implementation of generative algorithms: "bringing back the nature to the nature".