926 resultados para Ananas sativus extract
Resumo:
The rapid increase in the deployment of CCTV systems has led to a greater demand for algorithms that are able to process incoming video feeds. These algorithms are designed to extract information of interest for human operators. During the past several years, there has been a large effort to detect abnormal activities through computer vision techniques. Typically, the problem is formulated as a novelty detection task where the system is trained on normal data and is required to detect events which do not fit the learned `normal' model. Many researchers have tried various sets of features to train different learning models to detect abnormal behaviour in video footage. In this work we propose using a Semi-2D Hidden Markov Model (HMM) to model the normal activities of people. The outliers of the model with insufficient likelihood are identified as abnormal activities. Our Semi-2D HMM is designed to model both the temporal and spatial causalities of the crowd behaviour by assuming the current state of the Hidden Markov Model depends not only on the previous state in the temporal direction, but also on the previous states of the adjacent spatial locations. Two different HMMs are trained to model both the vertical and horizontal spatial causal information. Location features, flow features and optical flow textures are used as the features for the model. The proposed approach is evaluated using the publicly available UCSD datasets and we demonstrate improved performance compared to other state of the art methods.
Resumo:
In this paper we demonstrate how to monitor a smartphone running Symbian operating system and Windows Mobile in order to extract features for anomaly detection. These features are sent to a remote server because running a complex intrusion detection system on this kind of mobile device still is not feasible due to capability and hardware limitations. We give examples on how to compute relevant features and introduce the top ten applications used by mobile phone users based on a study in 2005. The usage of these applications is recorded by a monitoring client and visualized. Additionally, monitoring results of public and self-written malwares are shown. For improving monitoring client performance, Principal Component Analysis was applied which lead to a decrease of about 80 of the amount of monitored features.
Resumo:
From human biomonitoring data that are increasingly collected in the United States, Australia, and in other countries from large-scale field studies, we obtain snap-shots of concentration levels of various persistent organic pollutants (POPs) within a cross section of the population at different times. Not only can we observe the trends within this population with time, but we can also gain information going beyond the obvious time trends. By combining the biomonitoring data with pharmacokinetic modeling, we can re-construct the time-variant exposure to individual POPs, determine their intrinsic elimination half-lives in the human body, and predict future levels of POPs in the population. Different approaches have been employed to extract information from human biomonitoring data. Pharmacokinetic (PK) models were combined with longitudinal data1, with single2 or multiple3 average concentrations of a cross-sectional data (CSD), or finally with multiple CSD with or without empirical exposure data4. In the latter study, for the first time, the authors based their modeling outputs on two sets of CSD and empirical exposure data, which made it possible that their model outputs were further constrained due to the extensive body of empirical measurements. Here we use a PK model to analyze recent levels of PBDE concentrations measured in the Australian population. In this study, we are able to base our model results on four sets5-7 of CSD; we focus on two PBDE congeners that have been shown3,5,8-9 to differ in intake rates and half-lives with BDE-47 being associated with high intake rates and a short half-life and BDE-153 with lower intake rates and a longer half-life. By fitting the model to PBDE levels measured in different age groups in different years, we determine the level of intake of BDE-47 and BDE-153, as well as the half-lives of these two chemicals in the Australian population.
Resumo:
This paper investigates the critical role of knowledge sharing (KS) in leveraging manufacturing activities, namely integrated supplier management (ISM) and new product development (NPD) to improve business performance (BP) within the context of Taiwanese electronic manufacturing companies. The research adopted a sequential mixed method research design, which provided both quantitative empirical evidence as well as qualitative insights, into the moderating effect of KS on the relationships between these two core manufacturing activities and BP. First, a questionnaire survey was administered, which resulted in a sample of 170 managerial and technical professionals providing their opinions on KS, NPD and ISM activities and the BP level within their respective companies. On the basis of the collected data, factor analysis was used to verify the measurement model, followed by correlation analysis to explore factor interrelationships, and finally moderated regression analyses to extract the moderating effects of KS on the relationships of NPD and ISM with BP. Following the quantitative study, six semi-structured interviews were conducted to provide qualitative in-depth insights into the value added from KS practices to the targeted manufacturing activities and the extent of its leveraging power. Results from quantitative statistical analysis indicated that KS, NPD and ISM all have a significant positive impact on BP. Specifically, IT infrastructure and open communication were identified as the two types of KS practices that could facilitate enriched supplier evaluation and selection, empower active employee involvement in the design process, and provide support for product simplification and the modular design process, thereby improving manufacturing performance and strengthening company competitiveness. The interviews authenticated many of the empirical findings, suggesting that in the contemporary manufacturing context KS has become an integral part of many ISM and NPD activities and when embedded properly can lead to an improvement in BP. The paper also highlights a number of useful implications for manufacturing companies seeking to leverage their BP through innovative and sustained KS practices.
Resumo:
Smartphones are getting increasingly popular and several malwares appeared targeting these devices. General countermeasures to smartphone malwares are currently limited to signature-based antivirus scanners which efficiently detect known malwares, but they have serious shortcomings with new and unknown malwares creating a window of opportunity for attackers. As smartphones become host for sensitive data and applications, extended malware detection mechanisms are necessary complying with the corresponding resource constraints. The contribution of this paper is twofold. First, we perform static analysis on the executables to extract their function calls in Android environment using the command readelf. Function call lists are compared with malware executables for classifying them with PART, Prism and Nearest Neighbor Algorithms. Second, we present a collaborative malware detection approach to extend these results. Corresponding simulation results are presented.
Resumo:
Smartphones become very critical part of our lives as they offer advanced capabilities with PC-like functionalities. They are getting widely deployed while not only being used for classical voice-centric communication. New smartphone malwares keep emerging where most of them still target Symbian OS. In the case of Symbian OS, application signing seemed to be an appropriate measure for slowing down malware appearance. Unfortunately, latest examples showed that signing can be bypassed resulting in new malware outbreak. In this paper, we present a novel approach to static malware detection in resource-limited mobile environments. This approach can be used to extend currently used third-party application signing mechanisms for increasing malware detection capabilities. In our work, we extract function calls from binaries in order to apply our clustering mechanism, called centroid. This method is capable of detecting unknown malwares. Our results are promising where the employed mechanism might find application at distribution channels, like online application stores. Additionally, it seems suitable for directly being used on smartphones for (pre-)checking installed applications.
Resumo:
Product rating systems are very popular on the web, and users are increasingly depending on the overall product ratings provided by websites to make purchase decisions or to compare various products. Currently most of these systems directly depend on users’ ratings and aggregate the ratings using simple aggregating methods such as mean or median [1]. In fact, many websites also allow users to express their opinions in the form of textual product reviews. In this paper, we propose a new product reputation model that uses opinion mining techniques in order to extract sentiments about product’s features, and then provide a method to generate a more realistic reputation value for every feature of the product and the product itself. We considered the strength of the opinion rather than its orientation only. We do not treat all product features equally when we calculate the overall product reputation, as some features are more important to customers than others, and consequently have more impact on customers buying decisions. Our method provides helpful details about the product features for customers rather than only representing reputation as a number only.
Resumo:
A building information model (BIM) provides a rich representation of a building's design. However, there are many challenges in getting construction-specific information from a BIM, limiting the usability of BIM for construction and other downstream processes. This paper describes a novel approach that utilizes ontology-based feature modeling, automatic feature extraction based on ifcXML, and query processing to extract information relevant to construction practitioners from a given BIM. The feature ontology generically represents construction-specific information that is useful for a broad range of construction management functions. The software prototype uses the ontology to transform the designer-focused BIM into a construction-specific feature-based model (FBM). The formal query methods operate on the FBM to further help construction users to quickly extract the necessary information from a BIM. Our tests demonstrate that this approach provides a richer representation of construction-specific information compared to existing BIM tools.
Resumo:
As e-commerce is becoming more and more popular, the number of customer reviews that a product receives grows rapidly. In order to enhance customer satisfaction and their shopping experiences, it has become important to analysis customers reviews to extract opinions on the products that they buy. Thus, Opinion Mining is getting more important than before especially in doing analysis and forecasting about customers’ behavior for businesses purpose. The right decision in producing new products or services based on data about customers’ characteristics means profit for organization/company. This paper proposes a new architecture for Opinion Mining, which uses a multidimensional model to integrate customers’ characteristics and their comments about products (or services). The key step to achieve this objective is to transfer comments (opinions) to a fact table that includes several dimensions, such as, customers, products, time and locations. This research presents a comprehensive way to calculate customers’ orientation for all possible products’ attributes.
Resumo:
In recent years, there has been a growing interest from the design and construction community to adopt Building Information Models (BIM). BIM provides semantically-rich information models that explicitly represent both 3D geometric information (e.g., component dimensions), along with non-geometric properties (e.g., material properties). While the richness of design information offered by BIM is evident, there are still tremendous challenges in getting construction-specific information out of BIM, limiting the usability of these models for construction. In this paper, we describe our approach for extracting construction-specific design conditions from a BIM model based on user-defined queries. This approach leverages an ontology of features we are developing to formalize the design conditions that affect construction. Our current implementation analyzes the component geometry and topological relationships between components in a BIM model represented using the Industry Foundation Classes (IFC) to identify construction features. We describe the reasoning process implemented to extract these construction features, and provide a critique of the IFC’s to support the querying process. We use examples from two case studies to illustrate the construction features, the querying process, and the challenges involved in deriving construction features from an IFC model.
Resumo:
Our daily lives become more and more dependent upon smartphones due to their increased capabilities. Smartphones are used in various ways, e.g. for payment systems or assisting the lives of elderly or disabled people. Security threats for these devices become more and more dangerous since there is still a lack of proper security tools for protection. Android emerges as an open smartphone platform which allows modification even on operating system level and where third-party developers first time have the opportunity to develop kernel-based low-level security tools. Android quickly gained its popularity among smartphone developers and even beyond since it bases on Java on top of "open" Linux in comparison to former proprietary platforms which have very restrictive SDKs and corresponding APIs. Symbian OS, holding the greatest market share among all smartphone OSs, was even closing critical APIs to common developers and introduced application certification. This was done since this OS was the main target for smartphone malwares in the past. In fact, more than 290 malwares designed for Symbian OS appeared from July 2004 to July 2008. Android, in turn, promises to be completely open source. Together with the Linux-based smartphone OS OpenMoko, open smartphone platforms may attract malware writers for creating malicious applications endangering the critical smartphone applications and owners privacy. Since signature-based approaches mainly detect known malwares, anomaly-based approaches can be a valuable addition to these systems. They base on mathematical algorithms processing data that describe the state of a certain device. For gaining this data, a monitoring client is needed that has to extract usable information (features) from the monitored system. Our approach follows a dual system for analyzing these features. On the one hand, functionality for on-device light-weight detection is provided. But since most algorithms are resource exhaustive, remote feature analysis is provided on the other hand. Having this dual system enables event-based detection that can react to the current detection need. In our ongoing research we aim to investigates the feasibility of light-weight on-device detection for certain occasions. On other occasions, whenever significant changes are detected on the device, the system can trigger remote detection with heavy-weight algorithms for better detection results. In the absence of the server respectively as a supplementary approach, we also consider a collaborative scenario. Here, mobile devices sharing a common objective are enabled by a collaboration module to share information, such as intrusion detection data and results. This is based on an ad-hoc network mode that can be provided by a WiFi or Bluetooth adapter nearly every smartphone possesses.
Resumo:
Aims This research sought to determine optimal corn waste stream–based fermentation medium C and N sources and incubation time to maximize pigment production by an indigenous Indonesian Penicillium spp., as well as to assess pigment pH stability. Methods and Results A Penicillium spp. was isolated from Indonesian soil, identified as Penicillium resticulosum, and used to test the effects of carbon and nitrogen type and concentrations, medium pH, incubation period and furfural on biomass and pigment yield (PY) in a waste corncob hydrolysate basal medium. Maximum red PY (497·03 ± 55·13 mg l−1) was obtained with a 21 : 1 C : N ratio, pH 5·5–6·0; yeast extract-, NH4NO3-, NaNO3-, MgSO4·7H2O-, xylose- or carboxymethylcellulose (CMC)-supplemented medium and 12 days (25°C, 60–70% relative humidity, dark) incubation. C source, C, N and furfural concentration, medium pH and incubation period all influenced biomass and PY. Pigment was pH 2–9 stable. Conclusions Penicillium resticulosum demonstrated microbial pH-stable-pigment production potential using a xylose or CMC and N source, supplemented waste stream cellulose culture medium. Significance and Impact of the Study Corn derived, waste stream cellulose can be used as a culture medium for fungal pigment production. Such application provides a process for agricultural waste stream resource reuse for production of compounds in increasing demand.
Resumo:
The Beauty Leaf tree (Calophyllum inophyllum) is a potential source of non-edible vegetable oil for producing future generation biodiesel because of its ability to grow in a wide range of climate conditions, easy cultivation, high fruit production rate, and the high oil content in the seed. This plant naturally occurs in the coastal areas of Queensland and the Northern Territory in Australia, and is also widespread in south-east Asia, India and Sri Lanka. Although Beauty Leaf is traditionally used as a source of timber and orientation plant, its potential as a source of second generation biodiesel is yet to be exploited. In this study, the extraction process from the Beauty Leaf oil seed has been optimised in terms of seed preparation, moisture content and oil extraction methods. The two methods that have been considered to extract oil from the seed kernel are mechanical oil extraction using an electric powered screw press, and chemical oil extraction using n-hexane as an oil solvent. The study found that seed preparation has a significant impact on oil yields, especially in the screw press extraction method. Kernels prepared to 15% moisture content provided the highest oil yields for both extraction methods. Mechanical extraction using the screw press can produce oil from correctly prepared product at a low cost, however overall this method is ineffective with relatively low oil yields. Chemical extraction was found to be a very effective method for oil extraction for its consistence performance and high oil yield, but cost of production was relatively higher due to the high cost of solvent. However, a solvent recycle system can be implemented to reduce the production cost of Beauty Leaf biodiesel. The findings of this study are expected to serve as the basis from which industrial scale biodiesel production from Beauty Leaf can be made.
Resumo:
Analyzing emotional states under duress or during heightened, life-and-death situations is extremely difficult, especially given the inability of laboratory experiments to replicate the environment and given the inherent biases of post event surveys. This is where natural experiments, such as the pager communications from September 11th can provide the kind of natural experiment emotion researchers have been seeking. We demonstrate that positive and pro-social communications are the first to emerge followed by the slower and lower negative communications. Religious sentiment is the last to emerge, as individual attempt to make sense of event. Additionally we provide a methodological discussion about the preparation and analysis of such natural experiments (the pager message content) and show the importance of using multiple methods to extract the broadest possible understanding.
Resumo:
Although topic detection and tracking techniques have made great progress, most of the researchers seldom pay more attention to the following two aspects. First, the construction of a topic model does not take the characteristics of different topics into consideration. Second, the factors that determine the formation and development of hot topics are not further analyzed. In order to correctly extract news blog hot topics, the paper views the above problems in a new perspective based on the W2T (Wisdom Web of Things) methodology, in which the characteristics of blog users, context of topic propagation and information granularity are investigated in a unified way. The motivations and features of blog users are first analyzed to understand the characteristics of news blog topics. Then the context of topic propagation is decomposed into the blog community, topic network and opinion network, respectively. Some important factors such as the user behavior pattern, opinion leader and network opinion are identified to track the development trends of news blog topics. Moreover, a blog hot topic detection algorithm is proposed, in which news blog hot topics are identified by measuring the duration, topic novelty, attention degree of users and topic growth. Experimental results show that the proposed method is feasible and effective. These results are also useful for further studying the formation mechanism of opinion leaders in blogspace.