985 resultados para Amorphous calcium phosphate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, physic nut (Jatropha curcas L.) has attracted attention because of its potential for biofuel production. Although it is adapted to low-fertility soils, physic nut requires soil acidity corrections and addition of a considerable amount of fertilizer for high productivity. The objective of this research was to evaluate the effectiveness of arbuscular mycorrhizal fungi (AMF) (control without AMF inoculation, Gigaspora margarita inoculation or Glomus clarum inoculation) on increasing growth and yield of physic nut seedlings under different rates of P fertilization (0, 25, 50, 100, 200, and 400 mg kg-1 P soil) in greenhouse. The experiment was arranged in a completely randomized, block in a factorial scheme design with four replications. The physic nut plants were harvested 180 days after the beginning of the experiment. Mycorrhizal inoculation increased physic nut growth, plant P concentration and root P uptake efficiency at low soil P concentrations. The P use quotient of the plants decreased as the amount of P applied increased, and the P use efficiency index increased at low P levels and decreased at high P levels. Mycorrhizal root colonization and AMF sporulation were negatively affected by P addition. The highest mycorrhizal efficiency was observed when the soil contained between 7.8 and 25 mgkg-1 of P. The physic nut plants responded strongly to P application, independent of mycorrhizal inoculation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The uncertainties inherent to experimental differential scanning calorimetric data are evaluated. A new procedure is developed to perform the kinetic analysis of continuous heating calorimetric data when the heat capacity of the sample changes during the crystallization. The accuracy of isothermal calorimetric data is analyzed in terms of the peak-to-peak noise of the calorimetric signal and base line drift typical of differential scanning calorimetry equipment. Their influence in the evaluation of the kinetic parameters is discussed. An empirical construction of the time-temperature and temperature heating rate transformation diagrams, grounded on the kinetic parameters, is presented. The method is applied to the kinetic study of the primary crystallization of Te in an amorphous alloy of nominal composition Ga20Te80, obtained by rapid solidification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Kationi-anionitasapaino ummessaolevien lypsylehmien säilörehuruokinnassa kalsiumin saannin ollessa runsas

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Bone graft substitute such as calcium sulfate are frequently used as carrier material for local antimicrobial therapy in orthopedic surgery. This study aimed to assess the systemic absorption and disposition of tobramycin in patients treated with a tobramycin-laden bone graft substitute (Osteoset® T). METHODS: Nine blood samples were taken from 12 patients over 10 days after Osteoset® T surgical implantation. Tobramycin concentration was measured by fluorescence polarization. Population pharmacokinetic analysis was performed using NONMEM to assess the average value and variability (CV) of pharmacokinetic parameters. Bioavailability (F) was assessed by equating clearance (CL) with creatinine clearance (Cockcroft CLCr). Based on the final model, simulations with various doses and renal function levels were performed. (ClinicalTrials.gov number, NCT01938417). RESULTS: The patients were 52 +/- 20 years old, their mean body weight was 73 +/- 17 kg and their mean CLCr was 119 +/- 55 mL/min. Either 10 g or 20 g Osteoset® T with 4% tobramycin sulfate was implanted in various sites. Concentration profiles remained low and consistent with absorption rate-limited first-order release, while showing important variability. With CL equated to CLCr, mean absorption rate constant (ka) was 0.06 h-1, F was 63% or 32% (CV 74%) for 10 and 20 g Osteoset® T respectively, and volume of distribution (V) was 16.6 L (CV 89%). Simulations predicted sustained high, potentially toxic concentrations with 10 g, 30 g and 50 g Osteoset® T for CLCr values below 10, 20 and 30 mL/min, respectively. CONCLUSIONS: Osteoset® T does not raise toxicity concerns in subjects without significant renal failure. The risk/benefit ratio might turn unfavorable in case of severe renal failure, even after standard dose implantation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calcium has a pivotal role in biological functions, and serum calcium levels have been associated with numerous disorders of bone and mineral metabolism, as well as with cardiovascular mortality. Here we report results from a genome-wide association study of serum calcium, integrating data from four independent cohorts including a total of 12,865 individuals of European and Indian Asian descent. Our meta-analysis shows that serum calcium is associated with SNPs in or near the calcium-sensing receptor (CASR) gene on 3q13. The top hit with a p-value of 6.3 x 10(-37) is rs1801725, a missense variant, explaining 1.26% of the variance in serum calcium. This SNP had the strongest association in individuals of European descent, while for individuals of Indian Asian descent the top hit was rs17251221 (p = 1.1 x 10(-21)), a SNP in strong linkage disequilibrium with rs1801725. The strongest locus in CASR was shown to replicate in an independent Icelandic cohort of 4,126 individuals (p = 1.02 x 10(-4)). This genome-wide meta-analysis shows that common CASR variants modulate serum calcium levels in the adult general population, which confirms previous results in some candidate gene studies of the CASR locus. This study highlights the key role of CASR in calcium regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypomagnesemia and hypophosphatemia are frequent after severe burns; however, increased urinary excretion does not sufficiently explain the magnitude of the mineral depletion. We measured the mineral content of cutaneous exudates during the first week after injury. Sixteen patients aged 34 +/- 9 y (mean +/- SD) with thermal burns were studied prospectively and divided in 3 groups according to the extent of their burn injury and the presence or absence of mineral supplements: group 1 (n = 5), burns covering 26 +/- 5% of body surface; group 2 (n = 6), burns covering 41 +/- 10%; and group 3 (n = 5), burns covering 42 +/- 6% with prescription of magnesium and phosphate supplements. Cutaneous exudates were extracted from the textiles (surgical drapes, dressings, sheets, etc) surrounding the patients from day 1 to day 7 after injury. Mean magnesium serum concentrations decreased below reference ranges in 12 patients between days 1 and 4 and normalized thereafter. Phosphate, normal on day 0, was low during the first week. Albumin concentrations, normal on day 0, decreased and remained low. Urinary magnesium and phosphate excretion were within reference ranges and not larger in group 3. Mean daily cutaneous losses were 16 mmol Mg/d and 11 mmol P/d (largest in group 2). Exudative magnesium losses were correlated with burn severity (r = 0.709, P = 0.003). Cutaneous magnesium losses were nearly four times larger than urinary losses whereas cutaneous phosphate losses were smaller than urinary phosphate losses. Mean daily losses of both magnesium and phosphate were more than the recommended dietary allowances. Exudative losses combined with urinary losses largely explained the increased mineral requirements after burn injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic assessment of global neural network connectivity through direct electrophysiological assays has remained technically infeasible, even in simpler systems like dissociated neuronal cultures. We introduce an improved algorithmic approach based on Transfer Entropy to reconstruct structural connectivity from network activity monitored through calcium imaging. We focus in this study on the inference of excitatory synaptic links. Based on information theory, our method requires no prior assumptions on the statistics of neuronal firing and neuronal connections. The performance of our algorithm is benchmarked on surrogate time series of calcium fluorescence generated by the simulated dynamics of a network with known ground-truth topology. We find that the functional network topology revealed by Transfer Entropy depends qualitatively on the time-dependent dynamic state of the network (bursting or non-bursting). Thus by conditioning with respect to the global mean activity, we improve the performance of our method. This allows us to focus the analysis to specific dynamical regimes of the network in which the inferred functional connectivity is shaped by monosynaptic excitatory connections, rather than by collective synchrony. Our method can discriminate between actual causal influences between neurons and spurious non-causal correlations due to light scattering artifacts, which inherently affect the quality of fluorescence imaging. Compared to other reconstruction strategies such as cross-correlation or Granger Causality methods, our method based on improved Transfer Entropy is remarkably more accurate. In particular, it provides a good estimation of the excitatory network clustering coefficient, allowing for discrimination between weakly and strongly clustered topologies. Finally, we demonstrate the applicability of our method to analyses of real recordings of in vitro disinhibited cortical cultures where we suggest that excitatory connections are characterized by an elevated level of clustering compared to a random graph (although not extreme) and can be markedly non-local.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Kationi-anionitasapaino ja kalsiumin saanti ummessaolevien lypsylehmien säilörehuruokinnassa

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a study about the influence of substrate temperature on deposition rate of hydrogenated amorphous silicon thin films prepared by rf glow discharge decomposition of pure silane gas in a capacitively coupled plasma reactor. Two different behaviors are observed depending on deposition pressure conditions. At high pressure (30 Pa) the influence of substrate temperature on deposition rate is mainly through a modification of gas density, in such a way that the substrate temperature of deposition rate is similar to pressure dependence at constant temperature. On the contrary, at low pressure (3 Pa), a gas density effect cannot account for the observed increase of deposition rate as substrate temperature rises above 450 K with an activation energy of 1.1 kcal/mole. In accordance with laser‐induced fluorescence measurements reported in the literature, this rise has been ascribed to an increase of secondary electron emission from the growing film surface as a result of molecular hydrogen desorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we study aluminium laser-fired contacts for intrinsic amorphous silicon layers deposited by Hot-Wire CVD. This structure could be used as an alternative low temperature back contact for rear passivated heterojunction solar cells. An infrared Nd:YAG laser (1064 nm) has been used to locally fire the aluminium through the thin amorphous silicon layers. Under optimized laser firing parameters, very low specific contact resistances (ρc ∼ 10 mΩ cm2) have been obtained on 2.8 Ω cm p-type c-Si wafers. This investigation focuses on maintaining the passivation quality of the interface without an excessive increase in the series resistance of the device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The scaling up of the Hot Wire Chemical Vapor Deposition (HW-CVD) technique to large deposition area can be done using a catalytic net of equal spaced parallel filaments. The large area deposition limit is defined as the limit whenever a further increment of the catalytic net area does not affect the properties of the deposited film. This is the case when a dense catalytic net is spread on a surface considerably larger than that of the film substrate. To study this limit, a system able to hold a net of twelve wires covering a surface of about 20 cm x 20 cm was used to deposit amorphous (a-Si:H) and microcrystalline (μc-Si:H) silicon over a substrate of 10 cm x 10 cm placed at a filament-substrate distance ranging from 1 to 2 cm. The uniformity of the film thickness d and optical constants, n(x, λ) and α(x,¯hω), was studied via transmission measurements. The thin film uniformity as a function of the filament-substrate distance was studied. The experimental thickness profile was compared with the theoretical result obtained solving the diffusion equations. The optimization of the filament-substrate distance allowed obtaining films with inhomogeneities lower than ±2.5% and deposition rates higher than 1 nm/s and 4.5 nm/s for (μc-Si:H) and (a-Si:H), respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amorphous and nanocrystalline silicon films obtained by Hot-Wire Chemical Vapor Deposition have been incorporated as active layers in n-type coplanar top gate thin film transistors deposited on glass substrates covered with SiO 2. Amorphous silicon devices exhibited mobility values of 1.3 cm 2 V - 1 s - 1, which are very high taking into account the amorphous nature of the material. Nanocrystalline transistors presented mobility values as high as 11.5 cm 2 V - 1 s - 1 and resulted in low threshold voltage shift (∼ 0.5 V).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogenated amorphous and nanocrystalline silicon, deposited by catalytic chemical vapour deposition, have been doped during deposition by the addition of diborane and phosphine in the feed gas, with concentrations in the region of 1%. The crystalline fraction, dopant concentration and electrical properties of the films are studied. The nanocrystalline films exhibited a high doping efficiency, both for n and p doping, and electrical characteristics similar to those of plasma-deposited films. The doping efficiency of n-type amorphous silicon is similar to that obtained for plasma-deposited electronic-grade amorphous silicon, whereas p-type layers show a doping efficiency of one order of magnitude lower. A higher deposition temperature of 450°C was required to achieve p-type films with electrical characteristics similar to those of plasma-deposited films.