962 resultados para Amine, Sam
Crystallization of SrCO3 on a self-assembled monolayer substrate: an in-situ synchrotron X-ray study
Resumo:
Self-assembled monolayers (SAMs) of alkanethiols on gold surfaces show great promise in controlling the nucleation and growth of inorganic minerals from solution. In doing so, they mimic the role of some biogenic macromolecules in natural biomineralisation processes. Crystallization on SAM surfaces is usually monitored ex-situ; by allowing the process to commence and to evolve for some time, removing the substrate from the mother solution, and then examining it using microscopy, diffraction etc. We present here for the first time, the use of high energy monochromatic synchrotron X-radiation in conjunction with a two dimensional detector to monitor in situ, in a time resolved fashion, the growth of SrCO3 (strontianite) crystals on a SAM substrate.
Resumo:
Three one-dimensional zinc phosphates, [C5N2H14][Zn(HPO4)2], I, [C10N4H26][Zn(HPO4)2].2H2O II, and [C4N2H6]2[Zn(HPO4)], III, have been prepared employing hydro/solvothermal methods in the presence of organic amines. While I and II consist of linear chains of corner-shared four-membered rings, III is a polymeric wire where the amine molecule is directly bonded to the metal center. The wire, as well as the chain in these structures, are held together by hydrogen bond interactions involving the amine and the framework oxygens. The polymeric zinc phosphate with wire-like architecture, III, is only the second example of such architecture. Crystal data: I, monoclinic, P21/c (no. 14), a=8.603(2), b=13.529(2), c=10.880(1) Å, β=94.9(1)°, V=1261.6(1) Å3, Z=4, ρcalc.=1.893 gcm−3, μ(MoKα)=2.234 mm−1, R1=0.032, wR2=0.086, [1532 observed reflections with I>2σ(I)], II, orthorhombic, Pbca (no. 61), a=8.393(1), b=15.286(1), c=22.659(1) Å, V=2906.9(2) Å3, Z=8, ρcalc.=1.794 gcm−3, μ(MoKα)=1.957 mm−1, R1=0.055, wR2=0.11, [1565 observed reflections with I>2σ(I) and III, monoclinic, P21/c (no. 14), a=8.241(1), b=13.750(2), c=10.572(1) Å, β=90.9(1)°, V=1197.7(2) Å3, Z=4, ρcalc.=1.805 gcm−3, μ(MoKα)=2.197 mm−1, R1=0.036, wR2=0.10, [1423 observed reflections with I>2σ(I)].
Resumo:
The title compound, C(6)H(10)N(2)O, is a zwitterionic pyrazole derivative. The crystal packing is predominantly governed by a three-center iminium-amine N(+)-H center dot center dot center dot O(-)center dot center dot center dot H-N interaction, leading to an undulating sheet-like structure lying parallel to (100).
Resumo:
In the title racemic compound, C(26)H(32)N(2)O(3), an intramolecular O-H center dot center dot center dot N hydrogen bond is formed between the phenolic OH group and the tertiary amine N atom. Another O-H center dot center dot center dot N hydrogen bond that is formed between the OH group and the pyridine N atom links the molecules into a polymeric chain extending along the a axis. The structure is further stabilized by intramolecular and intermolecular C-H center dot center dot center dot O interactions.
Resumo:
The synthesis, characterization, and reactivity of a chromium(0) complex bearing an amine-borane moiety (eta(6)-C(6)H(5)CH(2)NMe(2)center dot BH(3))Cr(CO)(3) (2) is reported. Photolysis of complex 2 results in the elimination of a CO ligand followed by the formation of an intramolecular sigma-borane complex (eta(1)-(eta(6)- C(6)H(5)CH(2)NMe(2)center dot BH(2)-H))Cr(CO)(2) (3). This species was characterized in solution by NMR spectroscopy. Reaction of complex 2 with photochemically generated (OC)(5)Cr(THF) affords a novel homobimetallic sigma-borane complex (OC)(3)Cr(eta(6)-C(6)H(5)CH(2)NMe(2)center dot BH(2)-H-Cr(CO)(5)) (4), wherein one of the BH moieties is bound to the chromium center in an eta(1)-fashion. The sigma-borane complex 4 was isolated in moderate to good yield (72%). The BH(3) fragment in the complexes 3 and 4 are highly dynamic involving exchange of the BH hydrogen bound to the metal with the terminal BH hydrogen atoms. The dynamics has been studied using variable-temperature NMR spectroscopy. Complexes 2 and 4 have been characterized by X-ray crystallography.
Resumo:
The bis(amino)hexachlorocyclotetraphosphazenes, 2-trans-6-N4P4 (NHR)2Cl6, R [dbnd] Me, Pr n Pr i , Bu n , CH2Ph, Ph, are obtained from the reaction of N4P4Cl8 with four mol. equivalents of the appropriate amine. Isomers with 2,4-structures have been isolated for R [dbnd] Bu n , CH2Ph. The 1H and 31P NMR spectra of these bis(amino) compounds and of their dimethylamino derivatives, 2-trans-6-N4P4 (NMe2)6 (NHR)2 are discussed.
Resumo:
P-aminobenzoate- intercalated copper hydroxysalt was prepared by coprecipitation at high pH (similar to 12). As the pH was reduced to similar to 7 on washing with water, the development of partial positive charge on the amine end of the intercalated anion caused repulsion between the layers leading to delamination and colloidal dispersion of monolayers of copper hydroxysalt in water. The dispersed copper hydroxysalt monolayers were used as precursors for the synthesis of copper(I)/(II) oxide nanoparticles at room temperature. While the hydroxysalt layers yielded spindle-shaped CuO particles when left to stand, they formed hollow spherical nanoparticles of Cu(2)O when treated with an alkaline solution of ascorbic acid.
Resumo:
The nanochemistry of calcium remains unexplored, which is largely due to the inaccessibility of calcium nanoparticles in an easy to handle form by conventional methods of synthesis as well as its highly reactive and pyrophoric nature. The synthesis of colloidal Ca nanoparticles by the solvated metal atom dispersion (SMAD) method is described. The as-prepared Ca-THF nanoparticles, which are polydisperse, undergo digestive ripening in the presence of a capping agent, hexadecyl amine (HDA) to afford highly monodisperse colloids consisting of 2-3 nm sized Ca-HDA nanoparticles. These are quite stable towards precipitation for long periods of time, thereby providing access to the study of the nanochemistry of Ca. Particles synthesized in this manner were characterized by UV-visible spectroscopy, high resolution electron microscopy, and powder X-ray diffraction methods. Under an electron beam, two adjacent Ca nanoparticles undergo coalescence to form a larger particle.
Resumo:
Atomistic molecular dynamics simulations have been carried out to reveal the characteristic features of ethylenediamine (EDA) cored protonated (corresponding to neutral pH) poly amido amine (PAMAM) dendrimers of generation 3 (G3) and 4 (G4) that are functionalized with single strand DNAs (ssDNAs). The four ssDNA strands that are attached via an alkythiolate [-S(CH(2))(6)-] linker molecule to the free amine groups on the surface of the PAMAM dendrimers are observed to undergo a rapid conformational change during the 25 ns long simulation period. From the RMSD values of ssDNAs, we find relative stability in the case of purine rich (having more adenine and guanine) ssDNA strands than pyrimidine rich (thymine and cytosine) ssDNA strands. The degree of wrapping of ssDNA strands on the dendrimer molecule was found to be influenced by the charge ratio of DNA and the dendrimer. As the G4 dendrimer contains relatively more positive charge than G3 dendrimer, we observe extensive wrapping of ssDNAs on the G4 dendrimer than G3 dendrimer. This might indicate that DNA functionalized G3 dendrimer is more suitable to construct higher order nanostructures. The linker molecule was also found to undergo drastic conformational change during the simulation. During nanosecond long simulation some portion of the linker molecule was found to be lying nearly flat on the surface of the dendrimer molecule. The ssDNA strands along with the linkers are seen to penetrate the surface of the dendrimer molecule and approach closer to the center of the dendrimer indicating the soft sphere nature of the dendrimer molecule. The effective radius of DNA-functionalized dendrimer nanoparticles was found to be independent of base composition of ssDNAs and was observed to be around 19.5 angstrom and 22.4 angstrom when we used G3 and G4 PAMAM dendrimers as the core of the nanoparticle respectively. The observed effective radius of DNA-functionalized dendrimer molecules apparently indicates the significant shrinkage in the structure that has taken place in dendrimer, linker and DNA strands. As a whole our results describe the characteristic features of DNA-functionalized dendrimer nanoparticles and can be used as strong inputs to design effectively the DNA-dendrimer nanoparticle self-assembly for their active biological applications.
Resumo:
New 2-chloro-3-formyl quinoline oxime esters were synthesized by the reaction of 2-chloro-3-formyl quinoline oximes with various benzoyl chlorides in the presence of triethyl amine and dichloromethane at 0 degrees C. The DNA photo cleavage studies of some new oxime esters were investigated by neutral agarose gel electrophoresis at different concentrations (40 mu M and 80 mu M). Analysis of the cleavage products in agarose gel indicated that few of quinoline oxime esters (3d-i) converted into supercoiled pUC19 plasmid DNA to its nicked or linear form. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The synthesis of THF coordinated aluminium nanoparticles by the solvated metal atom dispersion (SMAD) method is described. These colloids are not stable with respect to precipitation of aluminium nanoparticles. The precipitated aluminium nanopowder is highly pyrophoric. Highly monodisperse colloidal aluminium nanoparticles (3.1 +/- 0.6 nm) stabilized by a capping agent, hexadecyl amine (HDA), have also been prepared by the SMAD method. They are stable towards precipitation of particles for more than a week. The Al-HDA nanoparticles are not as pyrophoric as the Al-THF samples. Particles synthesized in this manner were characterized by high-resolution electron microscopy and powder X-ray diffraction. Annealing of the Al-HDA nanoparticles resulted in carbonization of the capping agent on the surface of the particles which imparts air stability to them. Carbonization of the capping agent was established using Raman spectroscopy and TEM. The annealed aluminium nanoparticles were found to be stable even upon their exposure to air for over a month which was evident from the powder XRD, TGA/DSC, and TEM studies. The successful passivation was further confirmed with the determination of high active aluminium content (95 wt%) upon exposure and storage under air.
Resumo:
Ethylene gas is burnt to generate soot which is collected thermophoretically from different locations of the flame. Tribological performance of the collected soot in hexadecane suspension is compared with that of carbon black and diesel soot. The soots are analysed to yield a range of mechanical properties, physical structures and chemistry. The paper correlates these property variations with the corresponding variations in friction and wear when the soot suspended in hexadecane is used to lubricate a steel on steel sliding interaction. The particles are dispersed in hexadecane by a non-ionic surfactant, poly-isobutylene succinimide (PIBS), which is mono-functional with no free amine group. The grafting of the surfactant on the soot particles is found to have a profound effect on the dispersion of the soot, in general, while, between the different soot types, the tribology is differentiated by the physical structure and chemistry.
Resumo:
A mild, environmentally friendly method for reduction of aromatic nitro group to amine is reported, using zinc powder in aqueous solutions of chelating ethers. The donor ether acts as a ligand and also serves as a co-solvent. Water is the proton source. This procedure is also a new method for the activation of zinc for electron transfer reduction of aromatic nitro compounds. The reduction is accomplished in a neutral medium and other reducing groups remained unaffected. The ethers used are dioxolane, 1,4-dioxane, ethoxymethoxyethane, dimethoxymethane, 1,2-dimethoxyethane, and diglyme.
Resumo:
An easy access to a library of simple organic salts derived from tert-butoxycarbonyl (Boc)-protected L-amino acids and two secondary amines (dicyclohexyl- and dibenzyl amine) are synthesized following a supramolecular synthon rationale to generate a new series of low molecular weight gelators (LMWGs). Out of the 12 salts that we prepared, the nitrobenzene gel of dicyclohexylammonium Boc-glycinate (GLY.1) displayed remarkable load-bearing, moldable and self-healing properties. These remarkable properties displayed by GLY.1 and the inability to display such properties by its dibenzylammonium counterpart (GLY.2) were explained using microscopic and rheological data. Single crystal structures of eight salts displayed the presence of a 1D hydrogen-bonded network (HBN) that is believed to be important in gelation. Powder X-ray diffraction in combination with the single crystal X-ray structure of GLY.1 clearly established the presence of a 1D hydrogen-bonded network in the xerogel of the nitrobenzene gel of GLY.1. The fact that such remarkable properties arising from an easily accessible (salt formation) small molecule are due to supramolecular (non-covalent) interactions is quite intriguing and such easily synthesizable materials may be useful in stress-bearing and other applications.