995 resultados para Amaurolithus primus


Relevância:

10.00% 10.00%

Publicador:

Resumo:

As pituitary function depends on the integrity of the hypothalamic-pituitary axis, any defect in the development and organogenesis of this gland may account for a form of combined pituitary hormone deficiency (CPHD). Although pit-1 was 1 of the first factors identified as a cause of CPHD in mice, many other homeodomain and transcription factors have been characterized as being involved in different developmental stages of pituitary gland development, such as prophet of pit-1 (prop-1), P-Lim, ETS-1, and Brn 4. The aims of the present study were first to screen families and patients suffering from different forms of CPHD for PROP1 gene alterations, and second to define possible hot spots and the frequency of the different gene alterations found. Of 73 subjects (36 families) analyzed, we found 35 patients, belonging to 18 unrelated families, with CPHD caused by a PROP1 gene defect. The PROP1 gene alterations included 3 missense mutations, 2 frameshift mutations, and 1 splice site mutation. The 2 reported frameshift mutations could be caused by any 2-bp GA or AG deletion at either the 148-GGA-GGG-153 or 295-CGA-GAG-AGT-303 position. As any combination of a GA or AG deletion yields the same sequencing data, the frameshift mutations were called 149delGA and 296delGA, respectively. All but 1 mutation were located in the PROP1 gene encoding the homeodomain. Importantly, 3 tandem repeats of the dinucleotides GA at location 296-302 in the PROP1 gene represent a hot spot for CPHD. In conclusion, the PROP1 gene seems to be a major candidate gene for CPHD; however, further studies are needed to evaluate other genetic defects involved in pituitary development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Morbidity and mortality in T1DM depend on metabolic control, which is assessed by HbA1c measurements every 3-4 months. Patients' self-perception of glycemic control depends on daily blood glucose monitoring. Little is known about the congruence of patients' and professionals' perception of metabolic control in T1DM. OBJECTIVE To assess the actual patients' self-perception and objective assessment (HbA1c) of metabolic control in T1DM children and adolescents and to investigate the possible factors involved in any difference. METHODS Patients with T1DM aged 8 - 18 years were recruited in a cross-sectional, retrospective and prospective cohort study. Data collection consisted of clinical details, measured HbA1c, self-monitored blood glucose values and questionnaires assessing self and professionals' judgment of metabolic control. RESULTS 91 patients participated. Mean HbA1c was 8.03%. HbA1c was higher in patients with a diabetes duration > 2 years (p = 0.025) and in patients of lower socioeconomic level (p = 0.032). No significant correlation was found for self-perception of metabolic control in well and poorly controlled patients. We found a trend towards false-positive memory of the last HbA1c in patients with a HbA1c > 8.5% (p = 0.069) but no difference in patients' knowledge on target HbA1c between well and poorly controlled patients. CONCLUSIONS T1DM patients are aware of a target HbA1c representing good metabolic control. Ill controlled patients appear to have a poorer recollection of their HbA1c. Self-perception of actual metabolic control is similar in well and poorly controlled T1DM children and adolescents. Therefore, professionals should pay special attention that ill controlled T1DM patients perceive their HbA1c correctly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Several monogenic defects have been reported to be associated with idiopathic short stature. Focusing on growth hormone receptor (GHR)-gene alterations, the heterozygosity of the same gene defect may be associated with a range of growth deficits. We found a heterozygous mutation (V144I) within exon 6 of the GHR gene in a patient with a low level of insulin-like growth factor I (IGF-I), normal level of GH, and severe short stature. Despite the lack of statistical difference, an overall tendency for reduced wt-GH-induction of GHR activation and Jak/Stat signalling in cells transiently expressing GHR-V144I alone or co-expressing wt-GHR compared to cells expressing only wt-GHR was found when GH doses were increased. Our results suggest that, although GHR sequence variants are responsible for some functional alterations commonly observed in children with idiopathic short stature, these changes may not explain all the height deficits observed in these subjects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE We investigated the skeletal growth profile of female rats from birth to senescence (100weeks) on the basis of sequential radiometrical, hormonal and biochemical parameters. DESIGN Weaning rats entered the study which was divided into two sections: a) sequential measurements of vertebral and tibial growths and bone mineral density (BMD), estimation of mineral content of the entire skeleton (BMC) and chemical analysis of vertebral Ca; and b) determination of basal and pulsatile growth hormone (rGH), insulin-like growth hormone (IGF-I), estradiol (E2), parathyroid hormone (PTH), osteocalcin (OC) and urinary d-pyridinoline (dp) throughout the experimental period. RESULTS Vertebral and tibial growths ceased at week 25 whereas BMD and BMC as well as total vertebral Ca exhibited a peak bone mass at week 40. rGH pulsatile profiles were significantly higher in younger animals coinciding with the period of active growth and IGF-I peaked at 7weeks, slowly declining thereafter and stabilizing after week 60. OC and dp closely paralleled IGF-I coinciding with the period of enhanced skeletal growth, remaining thereafter in the low range indicative of reduced bone turnover. E2 increased during reproductive life but the lower values subsequently recorded were still in the physiological range, strongly suggesting a protective role of this steroid on bone remodeling. PTH followed a similar profile to E2, but the significance of this after completion of growth remains unclear. CONCLUSIONS Mechanisms governing skeletal growth in the female rat appear similar to those in humans. Bone progression and attainment of peak bone mass are under simultaneous control of rGH, IGF-I and calciotropic hormones and are modulated by E2. This steroid seems to protect the skeleton from resorption before senescence whereas the role of PTH in this context remains uncertain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE Altered arterial stiffness is a recognized risk factor of poor cardiovascular health. Ambulatory arterial stiffness index (AASI, defined as one minus the regression slope of diastolic on systolic blood pressure values derived from a 24 h arterial blood pressure monitoring, ABPM) is an upcoming and readily available marker of arterial stiffness. Our hypothesis was that AASI is increased in obese children compared to age- and gender matched healthy subjects. METHODS AASI was calculated from ABPM in 101 obese children (BMI ≥ 1.88 SDS according to age- and sex-specific BMI charts), 45% girls, median BMI SDS 2.8 (interquartile range (IQR) 2.5-3.4), median age 11.5 years (9.1-13.4) and compared with an age and gender matched healthy control group of 71 subjects with median BMI SDS 0.0 (-0.8-0.5). Multivariate regression analysis was applied to identify significant independent factors explaining AASI variability in this population. RESULTS AASI was significantly higher in obese children compared to controls (0.388 (0.254-0.499) versus 0.190 (0.070-0.320), p < 0.0001), but blood pressure values were similar. In a multivariate analysis including obese children only, AASI was independently predicted by 24-h systolic blood pressure SDS (p = 0.012); in a multivariate analysis including obese children and controls BMI SDS and pulse pressure independently influenced AASI (p < 0.001). CONCLUSIONS This study shows that AASI, a surrogate marker of arterial stiffness, is increased in obese children. AASI seems to be influenced by BMI and pulse pressure independently of systolic and diastolic blood pressure values, suggesting that other factors are involved in increased arterial stiffness in obese children.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Butyrate is a short-chain fatty acid (SCFA) closely related to the ketone body ß-hydroxybutyrate (BHB), which is considered to be the major energy substrate during prolonged exercise or starvation. During fasting, serum growth hormone (GH) rises concomitantly with the accumulation of BHB and butyrate. Interactions between GH, ketone bodies and SCFA during the metabolic adaptation to fasting have been poorly investigated to date. In this study, we examined the effect of butyrate, an endogenous agonist for the two G-protein-coupled receptors (GPCR), GPR41 and 43, on non-stimulated and GH-releasing hormone (GHRH)-stimulated hGH secretion. Furthermore, we investigated the potential role of GPR41 and 43 on the generation of butyrate-induced intracellular Ca2+ signal and its ultimate impact on hGH secretion. To study this, wt-hGH was transfected into a rat pituitary tumour cell line stably expressing the human GHRH receptor. Treatment with butyrate promoted hGH synthesis and improved basal and GHRH-induced hGH-secretion. By acting through GPR41 and 43, butyrate enhanced intracellular free cytosolic Ca2+. Gene-specific silencing of these receptors led to a partial inhibition of the butyrate-induced intracellular Ca2+ rise resulting in a decrease of hGH secretion. This study suggests that butyrate is a metabolic intermediary, which contributes to the secretion and, therefore, to the metabolic actions of GH during fasting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Aggregation of growth hormone (GH) required for its proper storage in granules is facilitated by zinc (Zn(2+)) transported by specific zinc transporters in and out of the regulated secretory pathway. Slc30a5 (ZnT5) was reported to have the highest gene expression among all zinc transporters in primary mouse pituitary cells while ZnT5-null mice presented with abnormal bone development and impaired growth compared to wild-type counterparts. METHODS In vitro studies performed in GH3 cells, a rat pituitary cell line that endogenously produces rat GH (rGH), included analysis of: cytoplasmic Zn(2+) pool changes after altering rSlc30a5 expression (luciferase assay), rZnT5 association with different compartments of the regulated secretory pathway (confocal microscopy), and the rGH secretion after rSlc30a5 knock-down (Western blot). RESULTS Confocal microscopy demonstrated high co-localization of rZnT5 with ER and Golgi (early secretory pathway) while siRNA-mediated knock-down of rSlc30a5 gene expression led to a significant reduction in rGH secretion. Furthermore, altered expression of rSlc30a5 (knock-down/overexpression) evoked changes in the cytoplasmic Zn(2+) pool indicating its important role in mediating Zn(2+) influx into intracellular compartments of the regulated secretory pathway. CONCLUSION Taken together, these results suggest that ZnT5 might play an important role in regulated GH secretion that is much greater than previously anticipated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epileptic encephalopathies are a phenotypically and genetically heterogeneous group of severe epilepsies accompanied by intellectual disability and other neurodevelopmental features. Using next-generation sequencing, we identified four different de novo mutations in KCNA2, encoding the potassium channel KV1.2, in six isolated patients with epileptic encephalopathy (one mutation recurred three times independently). Four individuals presented with febrile and multiple afebrile, often focal seizure types, multifocal epileptiform discharges strongly activated by sleep, mild to moderate intellectual disability, delayed speech development and sometimes ataxia. Functional studies of the two mutations associated with this phenotype showed almost complete loss of function with a dominant-negative effect. Two further individuals presented with a different and more severe epileptic encephalopathy phenotype. They carried mutations inducing a drastic gain-of-function effect leading to permanently open channels. These results establish KCNA2 as a new gene involved in human neurodevelopmental disorders through two different mechanisms, predicting either hyperexcitability or electrical silencing of KV1.2-expressing neurons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background: Aromatase deficiency may result in a complete block of estrogen synthesis because of the failure to convert androgens to estrogens. In females, this results in virilisation at birth, ovarian cysts in prepuberty and lack of pubertal development but virilisation, thereafter. Objective and methods: We studied the impact of oral 17β-estradiol treatment on ovarian and uterine development, and on LH/FSH and inhibin B during the long-term follow-up of a girl harboring compound heterozygote point mutations in the CYP19A1 gene. Results: In early childhood, low doses of oral 17β-estradiol were needed. During prepuberty treatment with slowly increasing doses of E2 resulted in normal uterine and almost normal development of ovarian volume, as well as number and size of follicles. Regarding hormonal feedback mechanisms, inhibin B levels were in the upper normal range during childhood and puberty. Low doses of estradiol did not suffice to achieve physiological gonadotropin levels in late prepuberty and puberty. However, when estradiol doses were further increased in late puberty levels of both FSH and LH declined with estradiol levels within normal range. Conclusion: Complete aromatase deficiency provides an excellent model of how ovarian and uterine development in relation to E2, LH, FSH and inhibin B feedback progresses from infancy to adolescence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Since recombinant human growth hormone (rhGH) became available in 1985, the spectrum of indications has broadened and the number of treated patients increased. However, long-term health-related quality of life (HRQoL) after childhood rhGH treatment has rarely been documented. We assessed HRQoL and its determinants in young adults treated with rhGH during childhood. METHODOLOGY/PRINCIPAL FINDINGS For this study, we retrospectively identified former rhGH patients in 11 centers of paediatric endocrinology, including university hospitals and private practices. We sent a questionnaire to all patients treated with rhGH for any diagnosis, who were older than 18 years, and who resided in Switzerland at time of the survey. Three hundred participants (58% of 514 eligible) returned the questionnaire. Mean age was 23 years; 56% were women; 43% had isolated growth hormone deficiency, or idiopathic short stature; 43% had associated diseases or syndromes, and 14% had growth hormone deficiency after childhood cancer. Swiss siblings of childhood cancer survivors and the German norm population served as comparison groups. HRQoL was assessed using the Short Form-36. We found that the Physical Component Summary of healthy patients with isolated growth hormone deficiency or idiopathic short stature resembled that of the control group (53.8 vs. 54.9). Patients with associated diseases or syndromes scored slightly lower (52.5), and former cancer patients scored lowest (42.6). The Mental Component Summary was similar for all groups. Lower Physical Component Summary was associated with lower educational level (coeff. -1.9). Final height was not associated with HRQoL. CONCLUSIONS/SIGNIFICANCE In conclusion, HRQoL after treatment with rhGH in childhood depended mainly on the underlying indication for rhGH treatment. Patients with isolated growth hormone deficiency/idiopathic short stature or patients with associated diseases or syndromes had HRQoL comparable to peers. Patients with growth hormone deficiency after childhood cancer were at high risk for lower HRQoL. This reflects the general impaired health of this vulnerable group, which needs long-term follow-up.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CONTEXT 3β-hydroxysteroid dehydrogenase deficiency (3βHSD) is a rare disorder of sexual development and steroidogenesis. There are two isozymes of 3βHSD, HSD3B1 and HSD3B2. Human mutations are known for the HSD3B2 gene which is expressed in the gonads and the adrenals. Little is known about testis histology, fertility and malignancy risk. OBJECTIVE To describe the molecular genetics, the steroid biochemistry, the (immuno-)histochemistry and the clinical implications of a loss-of-function HSD3B2 mutation. METHODS Biochemical, genetic and immunohistochemical investigations on human biomaterials. RESULTS A 46,XY boy presented at birth with severe undervirilization of the external genitalia. Steroid profiling showed low steroid production for mineralocorticoids, glucocorticoids and sex steroids with typical precursor metabolites for HSD3B2 deficiency. The genetic analysis of the HSD3B2 gene revealed a homozygous c.687del27 deletion. At pubertal age, he showed some virilization of the external genitalia and some sex steroid metabolites appeared likely through conversion of precursors secreted by the testis and converted by unaffected HSD3B1 in peripheral tissues. However, he also developed enlarged breasts through production of estrogens in the periphery. Testis histology in late puberty revealed primarily a Sertoli-cell-only pattern and only few tubules with arrested spermatogenesis, presence of few Leydig cells in stroma, but no neoplastic changes. CONCLUSIONS The testis with HSD3B2 deficiency due to the c.687del27 deletion does not express the defective protein. This patient is unlikely to be fertile and his risk for gonadal malignancy is low. Further studies are needed to obtain firm knowledge on malignancy risk for gonads harboring defects of androgen biosynthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND The long-term safety of growth hormone treatment is uncertain. Raised risks of death and certain cancers have been reported inconsistently, based on limited data or short-term follow-up by pharmaceutical companies. PATIENTS AND METHODS The SAGhE (Safety and Appropriateness of Growth Hormone Treatments in Europe) study assembled cohorts of patients treated in childhood with recombinant human growth hormone (r-hGH) in 8 European countries since the first use of this treatment in 1984 and followed them for cause-specific mortality and cancer incidence. Expected rates were obtained from national and local general population data. The cohort consisted of 24,232 patients, most commonly treated for isolated growth failure (53%), Turner syndrome (13%) and growth hormone deficiency linked to neoplasia (12%). This paper describes in detail the study design, methods and data collection and discusses the strengths, biases and weaknesses consequent on this. CONCLUSION The SAGhE cohort is the largest and longest follow-up cohort study of growth hormone-treated patients with follow-up and analysis independent of industry. It forms a major resource for investigating cancer and mortality risks in r-hGH patients. The interpretation of SAGhE results, however, will need to take account of the methods of cohort assembly and follow-up in each country.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MAMLD1 is thought to cause disordered sex development in 46,XY patients. But its role is controversial because some MAMLD1 variants are also detected in normal individuals, several MAMLD1 mutations have wild-type activity in functional tests, and the male Mamld1-knockout mouse has normal genitalia and reproduction. Our aim was to search for MAMLD1 variations in 108 46,XY patients with disordered sex development, and to test them functionally. We detected MAMDL1 variations and compared SNP frequencies in controls and patients. We tested MAMLD1 transcriptional activity on promoters involved in sex development and assessed the effect of MAMLD1 on androgen production. MAMLD1 expression in normal steroid-producing tissues and mutant MAMLD1 protein expression were also assessed. Nine MAMLD1 mutations (7 novel) were characterized. In vitro, most MAMLD1 variants acted similarly to wild type. Only the L210X mutation showed loss of function in all tests. We detected no effect of wild-type or MAMLD1 variants on CYP17A1 enzyme activity in our cell experiments, and Western blots revealed no significant differences for MAMLD1 protein expression. MAMLD1 was expressed in human adult testes and adrenals. In conclusion, our data support the notion that MAMLD1 sequence variations may not suffice to explain the phenotype in carriers and that MAMLD1 may also have a role in adult life.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CONTEXT The autosomal dominant form of GH deficiency (IGHD II) is characterized by markedly reduced GH secretion combined with low concentrations of IGF-1 leading to short stature. OBJECTIVE Structure-function analysis of a missense mutation in the GH-1 gene converting codon 76 from leucine (L) to proline (P) yielding a mutant GH-L76P peptide. DESIGN, SETTINGS, AND PATIENTS Heterozygosity for GH-L76P/wt-GH was identified in a nonconsanguineous Spanish family. The index patients, two siblings, a boy and a girl, were referred for assessment of their short stature (-3.2 and -3.8 SD). Their grandmother, father, and aunt were also carrying the same mutation and showed severe short stature; therefore, IGHD II was diagnosed. INTERVENTIONS AND RESULTS AtT-20 cells coexpressing both wt-GH and GH-L76P showed a reduced GH secretion (P < .001) after forskolin stimulation when compared with the cells expressing only wt-GH. In silico mutagenesis and molecular dynamics simulations presented alterations of correct folding and mutant stability compared with wt-GH. Therefore, further structural analysis of the GH-L76P mutant was performed using expressed and purified proteins in Escherichia coli by thermofluor assay and fast degradation proteolysis assay. Both assays revealed that the GH-L76P mutant is unstable and misfolded compared to wt-GH confirming the bioinformatic model prediction. CONCLUSIONS This is the first report of a family suffering from short stature caused by IGHD II, which severely affects intracellular GH folding and stability as well as secretion, highlighting the necessity of functional analysis of any GH variant for defining new mechanisms as a cause for IGHD II.