841 resultados para Allylic amine
Resumo:
The lipophilic dihydrofolate reductase (DHFR) inhibitor m-azidopyrimethamine (MZP) was investigated for suitability for development as a topical antipsoriatic agent. The clinical features and treatments for psoriasis were reviewed. High performance liquid chromatography (HPLC) was employed as the main analytical method, with UV spectroscopy being used in some cases. Reduction of the azido-group was proposed as a potential detoxification mechanism for MZP. The rates of reduction of a series of substituted phenyl azide compounds by dithiothreitol were investigated and found to depend on the substitution pattern of the aryl azide molecular, with electron deficient azides exhibiting faster rates of reduction in the system studied. The rates of reduction of MZP and analogous compounds were also studied using this model. The skin penetration of MZP was assessed using an in vitro hairless mouse skin model. The rate of permeation (flux) of MZP across hairless mouse skin was found to be dependent on the quantity of propylene glycol used as cosolvent in the vehicle and the pH. The use of a pretreatment regime of oleic acid in propylene glycol was shown to greatly increase the penetration of MZP through the hairless mouse skin as compared to application without pretreatment, or pretreatment with other penetration enhancers. The metabolism of MZP was studied in in vitro models comprising skin homogenates, SV-K14 human keratinocyte cell cultures and skin commensal bacterial cultures. No conversion of MZP to the corresponding amine was detected in any of the models. The growth inhibitory properties of MZP were investigated in an in vitro SV-K14 human keratinocyte cell culture model and compared with those of other DHFR inhibitors. [14C]-pyrimethamine was shown to be taken up by the SV-K14 keratinocytes.
Resumo:
Salt formation has extensively been studied as a strategy to improve drug solubility but it has not been explored as a strategy to improve mechanical properties. A better understanding of which factors of the solid state can have an influence in the mechanical properties of pharmaceutical powders can help to optimise and reduce cost of tablet manufacturing. The aim of this study was to form different series of amine salts of flurbiprofen, gemfibrozil and diclofenac and to establish predictive relationships between architectural characteristics and physicochemical and mechanical properties of the salts. For this purpose, three different carboxylic acid drugs were selected: flurbiprofen, gemfibrozil and diclofenac, similar in size but varying in flexibility and shape and three different series of counterions were also chosen: one with increasing bulk and no hydroxyl groups to limit the hydrogen bonding potential; a second one with increasing number of hydroxyl groups and finally a third series, related to the latter in number of hydroxyl groups but with different molecular shape and flexibility. Physico-chemical characterization was performed (DSC, TGA, solubility, intrinsic dissolution rate, particle size, true density) and mechanical properties measured using a compaction replicator. Strained molecular conformations produce weaker compacts as they have higher energy than preferred conformations that usually lie close to energy minimums and oppose plastic deformation. It was observed that slip planes, which correspond to regions of weakest interaction between the planes, were associated with improved plasticity and stronger compacts. Apart from hydrogen bonds, profuse van der Waals forces can result in ineffective slip planes. Salts displaying two-dimensional densely hydrogen bonded layers produced stronger compacts than salts showing one-dimensional networks of non-bonded columns, probably by reducing the attachment energy between layers. When hydrogen bonds are created intramolecularly, it is possible that the mechanical properties are compromised as they do not contribute so much to create twodimensional densely bonded layers and they can force molecules into strained conformations. Some types of hydrogen bonding network may be associated with improved mechanical properties, such as type II, or R (10) 3 4 using graph-set notation, versus type III, or R (12) 4 8 , columns. This work clearly demonstrates the potential of investigating crystal structure-mechanical property relationship in pharmaceutical materials.
Resumo:
Organic substances, particularly polymers, are finding increasing use in modifying the properties of cements and concrete. Although a significant amount of research has been conducted into the modification of the mechanical properties of cements by polymers, little is known about the nature of the interface and interactions taking place between the two phases. This thesis addresses the problem of elucidating such interactions. Relevant literature is reviewed, covering the general use of polymers with cements, the chemistry of cements and polymers, adhesion and known interactions between polymers and both cements and related minerals. Although several polymer systems were studied, two in particular were selected, as being well characterized. These were: - 1) polymethyl methacrylate (PMMA), the polymer derived from methyl methacrylate (MMA), and 2) an amine-cured epoxy resin system. By this approach, a methodology was developed for the examination of other polymer/cement interactions. Experiments were conducted in five main areas:- 1) polymer-cement adhesion and the feasibility of revealing interfacial regions mechanically, 2) chemical reactions between polymers and cements, 3) characterization of cement adhesion surfaces, 4) interactions affecting overall polymerisation rates, and 5) studies of polymer impregnated cements. The following conclusions were reached:- 1) The PMMA/cement interface contains calcium methacrylate as an interfacial reaction product, water being a reactant. Calcium methacrylate is detrimental to the properties of PMMA/cement composites, being highly water-soluble. 2) The pore surface of cement accelerates the polymerisation of MMA, leading to an increased molecular weight compared to polymerisation of pure MMA, minerals in hydrated cement powders having the opposite effect. 3) The investigation of reaction products presents a number of experimental problems, selection of appropriate techniques depending upon the system studied. For the two systems examined in detail, ion chromatography proved particularly useful; DTA, IRS and XPS indicated reactions, though the data was hard to interpret; XRD proving inconclusive. 4) It is impractical to reveal interfacial regions mechanically, but may be accomplished by chemical means.
Resumo:
Microbial transglutaminase is favoured for use in industry over the mammalian isoform, and hence has been utilized, to great effect, as an applied biocatalyst in many industrial areas including the food and textiles industries. There are currently only a limited number of microbial TGase sources known. A number of organisms have been screened for transglutaminase activity using biochemical assays directed towards TGase catalyzed reactions (amine incorporation and peptide cross-linking assay). Of those organisms screened, TGase was identified in a number of isolates including members of the Bacillus and Streptomyces families. In addition, a protein capable of performing a TGase-like reaction was identified in the organism Pseudomonas putida that was deemed immunologically distinct from previously described TGase isoforms, though further work would be required to purify the protein responsible. The genuses Streptoverticillium and Streptomyces are known to be closely related. A number of micro-organisms relating to Streptomyces mobaraensis (formerly Streptoverticillium mobaraensis) have been identified as harboring a TGase enzyme. The exact biological role of Streptomyces TGase is not well understood, though from work undertaken here it would appear to be involved in cell wall growth. Comparison of the purified Streptomyces TGase proteins showed them to exhibit marginally different characteristics in relation to enzymatic activity and pH dependency upon comparison with Streptomyces mobaraensis TGase. In addition, TGase was identified in the organism Saccharomonospora viridis that was found to be genetically identical to that from S. mobaraensis raising questions about the enzymes dissemination in nature. TGase from S. baldaccii was found to be most diverse with respect to enzymatic characteristics whilst still retaining comparable E(y-glutamyl) lysine bond formation to S. mobaraensis TGase. As such S. baldaccii TGase was cloned into an expression vector enabling mass production of the enzyme thereby providing a viable alternative to S. mobaraensis TGase for many industrial processes.
Resumo:
The effect of stainless steel, glass, zirconium and titanium enamel surfaces on the thermal and photooxidative toughening mechanism of dehydrated castor oil films deposited on these surfaces was investigated using different analytical and spectroscopic methods. The conjugated and non-conjugated double bonds were identified and quantified using both Raman spectroscopy and 1D and 2D NMR spectroscopy. The disappearance of the double bonds in thermally oxidised oil-on-surface films was shown to be concomitant with the formation of hydroperoxides (determined by iodometric titration). The type of the surface had a major effect on the rate of thermal oxidation of the oil, but all of the surfaces examined had resulted in a significantly higher rate of oxidation compared to that of the neat oil. The highest effect was exhibited by the stainless steel surface followed by zirconium enamel, titanium enamel and glass. The rate of thermal oxidation of the oil-on-steel surface (at 100 °C, based on peroxide values) was more than five times faster than that of oil-on-glass and more than 21 times faster than the neat oil when compared under similar thermal oxidative conditions. The rate of photooxidation at 60 °C of oil-on-steel films was found to be about one and half times faster than their rate of thermal oxidation at the same temperature. Results from absorbance reflectance infrared microscopy with line scans taken across the depth of thermally oxidised oil-on-steel films suggest that the thermal oxidative toughening mechanism of the oil occurs by two different reaction pathways with the film outermost layers, i.e. furthest away from the steel surface, oxidising through a traditional free radical oxidation process involving the formation of various oxygenated products formed from the decomposition of allylic hydroperoxides, whereas, in the deeper layers closer to the steel surface, crosslinking reactions predominate.
The structural and electrochemical consequences of hydrogenating Copper N2S2 Schiff base macrocycles
Resumo:
A series of cis and trans tetradentate copper macrocyclic complexes, of ring size fourteen - sixteen, which employ amine and thioether donor groups are reported. Apart from 5,6,15,16-bisbenzo-8,13-diaza-1,4-dithia-cyclohexadecane copper(I) (cis-[Cu(H4NbuSen)]+) all of the complexes are obtained in the copper(II) form. Crystallographic analysis shows that the copper(II) complexes all adopt a distorted planar geometry around the copper. In contrast, cis-[Cu(H4NbuSen)]+ is found to adopt a distorted tetrahedral geometry. The complexes were subjected to electrochemical analysis in water and acetonitrile. The effect of the solvent, positions of the donor atoms (cis/trans) on E1/2 is discussed as is the comparison of the electrochemical behaviour of these complexes with their parent Schiff base macrocycles.
Resumo:
There is a clinical need for a more effective vaccine against hepatitis B, and in particular vaccines that may be suitable for therapeutic administration. This study assesses the potential of cationic surfactant vesicle based formulations using two agents; the cationic amine containing [N-(N′,N′-dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol) or dimethyl dioctadecylammonium bromide (DDA) with hepatitis B surface antigen (HBsAg). Synthetic mycobacterial cord factor, trehalose 6,6′-dibehenate (TDB) has been used as an adjuvant and the addition of 1-monopalmitoyl glycerol (C16:0) (MP) and cholesterol (Chol) to DDA-TDB is assessed for its potential to facilitate formation of dehydration-rehydration vesicles (DRV) at room temperature, and the effect of this on immune responses. A DRV formulation is directly compared to an adsorbed formulation of the same composition and preparation protocol (MP:dioleoyl phosphoethanolamine (DOPE):Chol:DC-Chol) and the direct substitution of MP with phosphatidylcholine (PC) is also compared in DRV antigen-entrapped formulations. MP and Chol were shown to facilitate the use of DDA-TDB in DRV formulations prepared at room temperature, whilst there was marginal alteration of immunogenicity (a reduction in HBsAg-specific IL-2). The HBsAg adsorbed DRV formulation was not significantly different from the HBsAg entrapped DRV formulation. Overall, DDA formulations incorporating TDB showed markedly increased antigen specific splenocyte proliferation and elicited cytokine production concomitant with a strong T cell driven response, delineating formulations that may be useful for further evaluation of their clinical potential. © 2007 Elsevier B.V. All rights reserved.
Resumo:
Responsive core-shell latex particles are used to prepare colloidosome microcapsules using thermal annealing and internal cross-linking of the shell, allowing production of the microcapsules at high concentrations. The core-shell particles are composed of a polystyrene core and a shell of poly[2-(dimethylamino)ethyl methacrylate]-b-poly[methyl methacrylate] (PDMA-b-PMMA) chains adsorbed onto the core surface, providing steric stabilisation. The PDMA component of adsorbed polymer shell confers the latex particle thermal and pH responsive characteristics, it also provides glass transitions at lower temperatures than that of the core and reactive amine groups. These features facilitate the formation of stable Pickering emulsion droplets and the immobilisation of the latex particle monolayer on these droplets to form colloidosome microcapsules. The immobilisation is achieved through thermal annealing or cross-linking of the shell at mild conditions feasible for large scale economic production. We demonstrate here that it is possible to anneal the particle monolayer on the emulsion drop surface at 75-86 ºC by using the lower glass transition temperature of the shell compared to that of the polystyrene cores (~108 ºC). The colloidosome microcapsules formed have a rigid membrane basically composed of a monolayer of particles. Chemical cross-linking has also been successfully achieved by confining a cross-linker within the disperse droplet. This approach leads to the formation of single-layered stimulus-responsive soft colloidosome membranes and provides the advantage of working at very high emulsion concentrations since inter-droplet cross-linking is thus avoided. The porosity and mechanical strength of microcapsules are also discussed here in terms of the observed structure of the latex particle monolayers forming the capsule membrane.
Resumo:
Aim: Salt formation is a widely used approach to improve the physicochemical and solid state properties of an active pharmaceutical ingredient. In order to better understand the relationships between the active drug, the selected counterion and the resultant salt form, crystalline salts were formed using four different carboxylic acid drugs and a closely related series of amine counterions. Thirty-six related crystalline salts were prepared, characterized and the relationship between solubility and dissolution behaviour and other properties of the salt and the counterion studied. Methods: Salts of four model acid drugs, gemfibrozil, flurbiprofen, ibuprofen and etodolac were prepared using the counterions butylamine, hexylamine, octylamine, benzylamine, cyclohexylamine, tert-butylamine, 2-amino-2-methylpropan-1-ol, 2-amino-2-methylpropan-1,3-diol andtris(hydroxymethyl)aminomethane. Salt formation was confirmed, the salts were characterized and their corresponding solubilities determined and rationalized with respect to the counterions' properties. Results and conclusion: The properties of the salt highly dependent on the nature of the counterion and, although there is considerable variation, some general conclusion can be drawn. For the alkyl amines series, increasing chain length leads to a reduction in solubility across all the acidic drugs studied and a reduction in melting point, thus contradicting simplistic relationships between solubility and melting point. Small, compact counterions consistently produce crystalline salts with high melting point accompanied with a modest improvement in solubility and the nature of hydrogen bonding between the ions has a major impact on the solubility. © 2012 Informa Healthcare USA, Inc.
Resumo:
Tissue transglutaminase (tTG) is a calcium-dependent and guanosine 5'-triphosphate (GTP) binding enzyme, which catalyzes the post-translational modification of proteins by forming intermolecular ε(ϒ-glutamyl)lysine cross-links. In this study, human osteoblasts (HOBs) isolated from femoral head trabecular bone and two osteosarcoma cell lines (HOS and MG-63) were studied for their expression and localization of tTG. Quantitative evaluation of transglutaminase (TG) activity determined using the [1,414C]-putrescine incorporation assay showed that the enzyme was active in all cell types. However, there was a significantly higher activity in the cell homogenates of MG-63 cells as compared with HOB and HOS cells (p <0.001). There was no significant difference between the activity of the enzyme in HOB and HOS cells. All three cell types also have a small amount of active TG on their surface as determined by the incorporation of biotinylated cadaverine into fibronectin. Cell surface-related tTG was further shown by preincubation of cells with tTG antibody, which led to inhibition of cell attachment. Western blot analysis clearly indicated that the active TG was tTG and immunocytochemistry showed it be situated in the cytosol of the cells. In situ extracellular enzyme activity also was shown by the cell-mediated incorporation of fluorescein cadaverine into extracellular matrix (ECM) proteins. These results clearly showed that MG-63 cells have high extracellular activity, which colocalized with the ECM protein fibronectin and could be inhibited by the competitive primary amine substrate putrescine. The contribution of tTG to cell surface/matrix interactions and to the stabilization of the ECM of osteoblast cells therefore could by an important factor in the cascade of events leading to bone differentiation and mineralization.
Resumo:
The use of the protein-crosslinking enzymes transglutaminases (EC 2.3.2.13), as biocatalysts in the processing of wool textiles offers a variety of exciting and realistic possibilities, which include reducing the propensity of wool fabric to shrink and maintaining or increasing fabric strength. Guinea pig liver (GPL) transglutaminase or the microbial transglutaminase isolated from Streptoverticilium mobaraense, when applied to wool either alone or following a protease treatment, resulted in an increase in wool yarn and fabric strength (up to a 25% increase compared to a control). This indicates that transglutaminases can remediate the negative effects of proteolytic treatments in terms of loss in fibre strength. Incubation of samples pretreated with different oxidative and reducing agents with both sources of transglutaminases led to significant increases in tensile strength for all samples tested, suggesting that yarn strength lost following chemical treatments can also be recovered. The two different transglutaminases (TGases) could also impart a significant reduction in fabric shrinkage. The incorporation of primary amine transglutaminase substrates into wool fibres, with a view to altering wool functionality, was demonstrated using the incorporation of the fluorescent primary amine fluorescein cadaverine (FC). Incubation of wool with this fluorescent amine and transglutaminase led to high levels of incorporation into the fibres. The treatment of wool textiles with transglutaminases indicates that a number of novel and radically different finishes for wool textiles can be developed.
Resumo:
The O–O–N–N–O-type pentadentate ligands H3ed3a, H3pd3a and H3pd3p (H3ed3a stands ethylenediamine-N,N,N′-triacetic acid; H3pd3a stands 1,3-propanediamine-N,N,N′-triacetic acid and H3pd3p stands 1,3-propanediamine-N,N,N′-tri-3-propionic acid) and the corresponding novel octahedral or square-planar/trigonal-bipyramidal copper(II) complexes have been prepared and characterized. H3ed3a, H3pd3a and H3pd3p ligands coordinate to copper(II) ion via five donor atoms (three deprotonated carboxylate atoms and two amine nitrogens) affording octahedral in case of ed3a3− and intermediate square-pyramidal/trigonal-bipyramidal structure in case of pd3a3− and pd3p3−. A six coordinate, octahedral geometry has been established crystallographically for the [Mg(H2O)6][Cu(ed3a)(H2O)]2 · 2H2O complex and five coordinate square-pyramidal for the [Mg(H2O)5Cu(pd3a)][Cu(pd3a)] · 2H2O. Structural data correlating similar chelate Cu(II) complexes have been used for the better understanding the pathway: octahedral → square-pyramidal ↔ trigonal- bipyramid geometry. An extensive configuration analysis is discussed in relation to information obtained for similar complexes. The infra-red and electronic absorption spectra of the complexes are discussed in comparison with related complexes of known geometries. Molecular mechanics and density functional theory (DFT) programs have been used to model the most stable geometric isomer yielding, at the same time, significant structural data. The results from density functional studies have been compared with X-ray data.
Resumo:
The diglycidyl ether of tetrabromobisphenol A, the diglycidyl ether of bisphenol A and their mixture was cured by 4,4'-diaminodiphenyl methane. The pyrolysis of the obtained epoxy resins was studied by TG, DSC, TG/FTIR as well as FTIR characterization of pyrolysis residues. The gaseous and high boiling pyrolysis products were collected, characterized by GC/MS and their formation is discussed. The brominated epoxy resins are thermally less stable than the non-brominated ones. This effect is caused by the amine-containing hardener. The degradation initiation reaction is associated with the formation of hydrogen bromide which further destabilizes the epoxy network. The effect of the curing agent can be used in recycling of epoxy resins to separate brominated pyrolysis products from non-brominated ones.
Resumo:
The selective conversion of alcohols to their carbonyl derivatives is a critical step towards a sustainable chemical industry. Heterogeneous Pd catalysts represent some of the most active systems known, even so further studies into the active species and role of support are required. Through controlling support mesostructure, using non-interconnected SBA-15 and interlinked SBA-16 and KIT-6, we have evaluated the role of pore architecture on supported Pd nanoparticles and their subsequent activity for liquid phase aerobic allylic alcohol selective oxidation.[1,2] These synthesised silica supports exhibit high surface areas (>800 m2g-1), and similar mesopore diameters (3.5 to 5 nm), but differ in their pore connectivity and arrangement; p6mm (SBA-15), I3mm (SBA-16) and I3ad (KIT-6). When evaluated alongside commercial non-mesoporous silica (200 m2 g-1) they promote enhanced Pd dispersion with interpenetrating assemblies providing further elevation. Macropore introduction into SBA-15, producing a hierarchical macro-mesoporous silica (MM-SBA-15), allows control over mesopore length and accessibility which escalates Pd distribution to levels akin to KIT-6 and SBA-16. Controlling dispersion, and likewise nanoparticle size, is thus facilitated through the choice of support and additionally Pd loading, with cluster sizes spanning 3.2 to 0.8 nm. X-ray spectroscopies indicate nanoparticles are PdO terminated with the oxide content a function of dispersion. Kinetic studies allude to surface PdO being the active site responsible, with a constant TOF observed, independent of loading and support. This confirms activity is governed by PdO density, whilst also overruling internal mass diffusion constraints. MM-SBA-15 facilitates superior activity and TOFs for long chain acyclic terpene alcohols due to reduced internal mass transport constraints.
Resumo:
The aerobic selective oxidation (selox) of alcohols represents an environmentally benign and atom efficient chemical valorisation route to commercially important allylic aldehydes, such as crotonaldehyde and cinnamaldehyde, which find application in pesticides, fragrances and food additives. Palladium nanoparticles are highly active and selective heterogeneous catalysts for such oxidative dehydrogenations, permitting the use of air (or dioxygen) as a green oxidant in place of stoichiometric chromate permanganate saltsor H2O2. Here we discuss how time-resolved, in-situ X-ray spectroscopies (XAS and XPS) reveal dynamic restructuring of dispersed Pd nanoparticles and Pd single-crystals in response to changing reaction environments, and thereby identify surface PdO as the active species responsible for palladium catalysed crotyl alcohol selox (Figure 1); on-stream reduction to palladium metal under oxygen-poor regimes thus appears the primary cause of catalyst deactivation. This insight has guided the subsequent application of surfactant-templating and inorganic nanocrystal methodologies to optimize the density of desired active PdO sites for the selective oxidation of natural products such as sesquiterpenoids.