833 resultados para All-optical packet routing
Resumo:
ZnO:Al thin films with c-axis preferred orientation were deposited on glass and Si substrates using RF magnetron sputtering technique. The effect of substrate on the structural and optical properties of ZnO:Al films were investigated. The results showed a strong blue peak from glass-substrate ZnO:Al film whose intensity became weak when deposited on Si substrate. However, the full width at half maxima (FWHM) of the Si-substrate ZnO:Al (0 0 2) peaks decreased evidently and the grain size increased. Finally, we discussed the influence of annealing temperature on the structural and optical properties of Si-substrate ZnO:Al films. After annealing, the crystal quality of Si-substrate ZnO:Al thin films was markedly improved and the intensity of blue peak (similar to 445 nm) increased noticeably. This observation may indicate that the visible emission properties of the ZnO:Al films are dependent more on the film crystallinity than on the film stoichiometry. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.
Resumo:
In communication networks such as the Internet, the relationship between packet generation rate and time is similar to a rectangle wavefunction due to the rhythm of humans. Thus, we investigate the traffic dynamics on a network with a rectangle wavepacket generation rate. It is found that the critical delivering capacity parameter beta(c) (which separates the congested phase and the free phase) decreases significantly with the duty cycle r of the rectangle wave for package generation. And, in the congested phase, more collective generation of packets (smaller r) is helpful for decreasing the packet aggregation rate. Moreover, it is found that the congested phase can be divided into two regions, i.e., region1 and region2, where the distributions of queue lengths are nonlinear and linear, respectively. Also, the linear expression for the distribution of queue lengths in region2 is obtained analytically. Our work reveals an obvious effect of the rectangle wave on the traffic dynamics and the queue length distribution in the system, which is of essential interest and may provide insights into the designing of work-rest schedules and routing strategies.
Resumo:
Synthesis of segmented all-Pt nanowires is achieved by a template-assisted method. The combination of a suitably chosen electrolyte/template system with pulse-reverse electrodeposition allows the formation of well-defined segments linked to nanowires. Manipulation of the morphology is obtained by controlling the electrokinetie effects on the local electrolyte distribution inside the nanochannels during the nanowire growth process, allowing a deviation from the continuously cylindrical geometry given by the nanoporous template. The length of the segments can be adjusted as a function of the cathodic pulse duration. Applying constant pulses leads to segments with homogeneous shape and dimensions along most of the total wire length. X-ray diffraction demonstrates that the preferred crystallite orientation of the polycrystalline wires varies with the average segment length. The results are explained considering transitions in texture formation with increasing thickness of the electrodeposit. A mechanism of segment formation is proposed based on structural characterizations. Nanowires with controlled segmented morphology are of great technological importance, because of the possibility to precisely control their substructure as a means of tuning their electrical, thermal, and optical properties. The concept we present in this work for electrodeposited platinum and track-etched polycarbonate membranes can be applied to other selected materials as well as templates and constitutes a general method to controlled nanostructuring and synthesis of shape controlled nanostructures.
Resumo:
A simple fluorescence detector for capillary electrophoresis (CE) using a blue light-emitting-diode (LED) as excitation source is constructed and evaluated. An optical fiber was used to collect the fluorescence, and a flat end of the fiber was modified to spherical end, resulting in 50% increase of efficiency over the flat end. A simple device for optical alignment of the fibers and capillary column was designed. The concentration and mass detection limits for fluorescein were 1.8 x 10(-7) Mol l(-1) and 4.3 femol, respectively. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A slab optical waveguide (SOWG) has been used for study of adsorption of both methylene blue (MB) and new methylene blue (NMB) in liquid-solid interface. Adsorption characteristics of MB and NMB on both bare SOWG and silanized SOWG by octadecyltrichlorosilane (ODS) were compared. The simultaneous determinations of both MB and NMB were explored by flow injection SOWG spectrophotometric analysis and artificial neural networks (ANNs) for the first time. Concentrations of MB and NMB were estimated simultaneously with the ANNs. Results obtained with SOWG were compared with those got by conventional UV-visible spectrophotometry. (C) 2003 Elsevier Science B.V All rights reserved.
Resumo:
Single crystals of K(2)Ln(NO3)(5). 2H(2)O (KLnN) (Ln = La, Ce, Pr, Nd, Sm) were grown from aqueous solution. The thermogravimetric analysis and differential thermal analysis curves of KLnN demonstrate that the processes of dehydration, melting, irreversible phase transformation and decomposition of NO3- take place in sequence in the heating processes (except KCN). There are three stages in the decomposition of NO3- in KLnN (Ln = La, Nd, Sm) while two in KLnN (Ln = Ce, Pr). K(2)Ln(NO3)(5) is formed at about 225 degrees C by the reaction of KNO3 and Ln(NO3)(3). nH(2)O (Ln = La, Ce, Pr, Nd). (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Three distyrylbenzene (DSB) derivatives were vacuum-evaporated on a (001) surface of KBr. DSB derivative molecules formed nuclei by interaction between the electron donative methoxyl group and Br- ion of the substrate crystal and oriented their longitudinal axis obliquely to the substrate surface. The peak shift between the emission peaks of solution and film decreased depending on the number of substituent. This phenomenon was originated to reduction of molecular interaction between neighboring molecules by steric hindrance of end substituents. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
The spontaneous emission properties of a single layer organic film in plane optical microcavities were studied. Optical microcavity was formed by a Tris(8-quinolinolato) aluminium (Alq) film sandwiched between a distributed Bragg reflector (DBR) and a Ag metallic reflector. Two kinds of microcavities were devised by using a different DBR structure. Compared with a Alq film, significantly spectral narrowing and intensity enhancement was observed in the two microcavities, which is attributed to the microcavity effect. The spectra characteristics of the two microcavities showed that the structure of DBR has much influence on the emission properties of a microcavity. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
K(4)Ln(2)(CO3)(3)F-4 (Ln=Pr, Nd, Sm, Eu, Gd) is a special type of frequency doubling compound, whose crystal structure exhibits a scarcity of fluorine ions. This leads to two different coordination polyhedrons in the general position of K(2) atoms: [K(2)O6F(1)(2)F(2)] and [K(21)O6F(1)(2)] in a 2/1 ratio. The chemical bonding structures of all constituent atoms of the compound K4Gd2(CO3)(3)F-4 (KGCOF) are comprehensively studied; moreover, the relationship between the chemical bonding structure and the nonlinear optical (NLO) properties is investigated from the chemical bond viewpoint. The theoretical prediction of the NLO tensor coefficient d(11) of KGCOF is in agreement with experimental observation. Theoretical analyses show that the nonlinearity of this crystal type mainly originates from K-O bonds. In addition, the correlation between the NLO tensor d(11) and the refractive index n(0) of KGCOF is discussed. (C) 2000 American Institute of Physics. [S0021-8979(00)07506-X].
Resumo:
Binary and ternary europium complexes with dibenzplymethane (DBM) and 1,10-phenanthroline (phen) were synthesized and doped into a sol-gel luminescence thin film and polyvinylbutyral (PVB) film. The luminescent spectra and lifetime of the films were measured. The final results showed that Eu(III) characteristic emission bands were observed in the spectra of all the doped films. Longer lifetimes and a higher photo-stability were observed in SiO2:Eu(III) complex luminescent thin films than in PVB:Eu(III) complex films that contained a corresponding amount of pure complexes. Heat-stability tests showed that SiO2:Eu(III) complex thin films still showed certain fluorescence after heat-treatment at a temperature of 130 degreesC, while little fluorescence could be observed in PVB:Eu(III) complex films under a UV lamp. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
This work probes the role of hydrogen bonds (such as O-H ... O and N-H ... O) in some inorganic nonlinear optical (NLO) crystals, such as HIO3, NH4H2PO4 (ADP), K[B5O6(OH)(4)] . 2H(2)O (KB5) and K2La(NO3)(5) . 2H(2)O (KLN), from the chemical bond standpoint. Second order NLO behaviors of these four typical inorganic crystals have been quantitatively studied, results show hydrogen bonds play a very important role in NLO contributions to the total nonlinearity. Conclusions derived here concerning the effect of hydrogen bonds on optical nonlinearities of inorganic crystals have important implications with regard to the utilization of hydrogen bonds in the structural design of inorganic NLO crystals. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Second order nonlinear optical (NLO) properties of single crystals with complex structures are studied, from the chemical bond viewpoint. Contributions of each type of constituent chemical bond to the total linearity and nonlinearity are calculated from the actual crystal structure, using the chemical bond theory of complex crystals and the modified bond charge model. We have quantitatively proposed certain relationships between the crystal structure and its NLO properties. Several relations have been established from the calculation. Our method makes it possible for us to identify, predict and modify new NLO materials according to our needs. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The second-order nonlinear optical tensor coefficients of both KTiOPO4 (KTP) and KTiOAsO4 (KTA) are calculated from the chemical bond viewpoint. All constituent chemical bonds of both crystals are considered, and contributions of each type of bond to the total linearity and nonlinearity are determined. Calculated results agree satisfactorily with experimental data in both signs and numerical values. The calculation shows that though TiO6 groups and P(1)O-4 or As(1)O-4 groups have relatively larger linear contributions, they can only produce an advantageous environment for KOx (x = 8, 9) groups and P(2)O-4 or As(2)O-4 groups in nonlinear optical contributions. The origin of nonlinearity of KTP family crystals comes from the KOx (x = 8, 9) and P(2)O-4 groups in their crystal structures. Furthermore, the difference in optical nonlinearities of KTP type crystals is analyzed, based on the detailed calculation of nonlinearities of both KTP and KTA. (C) 1999 Academic Press.
Resumo:
From the chemical bond viewpoint, the second-order nonlinear optical (NLO) tensor coefficients of some Re-2(MoO4)(3) (ReMO)-type tare earth molybdates, with Re = Pr, Nd, Sm, Eu, Gd, Tb and Dy, have been calculated by using the chemical bond theory of complex crystals and the modified bond charge model. All kinds of constituent chemical bonds are considered in the calculation. The major part of the NLO properties of these ReMO crystals is found from the ReO7 groups. The NLO coefficients of these ReMO crystals decrease with Re from Pr to Dy. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Linear and nonlinear optical (NLO) properties of KNbO3 in various phases are calculated from their crystal structures. Nonlinear optical tensor coefficients are found to be very sensitive to the atomic geometry, changing as much as 85% between the ferroelectric tetragonal and rhombohedral phases. The predicted principal refractive indices are also found to be sensitive to their structural changes. In the tetragonal phase KNbO3 has the largest NLO responses, in the orthorhombic phase KNbO3 has the relative larger NLO coefficients, and in the rhombohedral structure KNbO3 has the large and homogeneous NLO properties. (C) 1998 Elsevier Science B.V. All rights reserved.