925 resultados para Advanced ceramics
Resumo:
A potential standard method for measuring the relative dissolution rate to estimate the resorbability of calcium-phosphate-based ceramics is proposed. Tricalcium phosphate (TCP), magnesium-substituted TCP (MgTCP) and zinc-substituted TCP (ZnTCP) were dissolved in a buffer solution free of calcium and phosphate ions at pH 4.0, 5.5 or 7.3 at nine research centers. Relative values of the initial dissolution rate (relative dissolution rates) were in good agreement among the centers. The relative dissolution rate coincided with the relative volume of resorption pits of ZnTCP in vitro. The relative dissolution rate coincided with the relative resorbed volume in vivo in the case of comparison between microporous MgTCPs with different Mg contents and similar porosity. However, the relative dissolution rate was in poor agreement with the relative resorbed volume in vivo in the case of comparison between microporous TCP and MgTCP due to the superimposition of the Mg-mediated decrease in TCP solubility on the Mg-mediated increase in the amount of resorption. An unambiguous conclusion could not be made as to whether the relative dissolution rate is predictive of the relative resorbed volume in vivo in the case of comparison between TCPs with different porosity. The relative dissolution rate may be useful for predicting the relative amount of resorption for calcium-phosphate-based ceramics having different solubility under the condition that the differences in the materials compared have little impact on the resorption process such as the number and activity of resorbing cells.
Resumo:
The primary element in the cAMP signal transduction pathway is the cAMP-dependent protein kinase (PKA). Expression of the RIα subunit of type I PKA is elevated in a variety of human tumours and cancer cell lines. The purpose of this study was to assess the prognostic importance of RIα expression in patients with ovarian cancer. We have evaluated the expression of RIα in a panel of human ovarian tumours (n = 40) and five human ovarian cancer cell lines using quantitative reverse transcription polymerase chain reaction (RT-PCR) and Western blot analysis. The human ovarian cell lines OAW42 and OTN14 express high endogenous levels of RIα mRNA and protein (at significantly higher mRNA levels than high tissue expressors, P < 0.05). The ovarian cell line A2780 expresses low endogenous levels of RIα mRNA and protein (also at higher mRNA levels than low tissue expressors, P < 0.05). Quantitative RT-PCR revealed no significant difference in RIα mRNA expression between different ovarian histological subtypes in this study. No associations were found between RIα mRNA expression and differentiation state. RIα mRNA expression was significantly associated with tumour stage (P = 0.0036), and this remained significant in univariate analysis (P = 0.0002). A trend emerged between RIα mRNA expression levels and overall survival in univariate analysis (P = 0.051), however, by multivariate analysis, stage remained the major determinant of overall survival (P = 0.0001). This study indicates that in ovarian epithelial tumours high RIα mRNA expression is associated with advanced stage disease. RIα expression may be of predictive value in ovarian cancer and may be associated with dysfunctional signalling pathways in this cancer type.
Resumo:
Selective cell recognition and capture has recently attracted significant interest due to its potential importance for clinical, diagnostic, environmental, and security applications. Current methods for cell isolation from complex samples are largely dependent on cell size and density, with limited application scope as many of the target cells do not exhibit appreciable differences in this respect. The most recent and forthcoming developments in the area of selective recognition and capture of whole cells, based on natural receptors, as well as synthetic materials utilising physical and chemical properties of the target cell or microorganism, are highlighted. Particular focus is given to the development of cell complementary surfaces using the cells themselves as templating agents, by means of molecular imprinting, and their combination with sensing platforms for rapid cell detection in complex media. The benefits and challenges of each approach are discussed and a perspective of the future of this research area is given.
Resumo:
BACKGROUND: Transforming growth factor-beta (TGF-beta) is a potent growth inhibitor in a wide range of cell types. A transducer of TGF-beta signaling known as Mothers against decapentaplegic homologue 4 (Smad4) is a known tumor suppressor found on chromosome 18q21.1 and is typically inactivated by deletion or mutation in pancreatic and colorectal cancers. The purpose of the article is to investigate Smad4 expression, gene copy number and methylation status in advanced cases of prostate cancer.
METHODS: We have employed Methylation Specific PCR (MSP) to identify methylation sites within the Smad4 promoter and combined this with quantitative real-time PCR to look for correlates between methylation status and Smad4 expression and to examine androgen receptor (AR) expression. Bacterial artificial chromosome-comparative genomic hybridization (BAC-CGH) has been used to look for genomic amplifications and deletions which may also contribute to expression changes.
RESULTS: We fail to find evidence of genomic deletions or amplifications affecting the Smad4 locus on chromosome 18 but show a correlation between promoter methylation and the loss of Smad4 expression in the same material. We confirm that the AR locus on the X chromosome is amplified in 30% of the advanced clinical samples and that this correlates with increased transcript levels as previously reported by other groups.
CONCLUSION: This indicates that epigenetic changes affect the expression of the Smad4 protein in prostate cancer and points to methylation of the promoter as a novel marker of and contributor to the disease warranting further study.
Resumo:
In patients with breast cancer (BC), deregulation of estrogen receptor (ERα) activity may account for most resistance to endocrine therapies. Our previous study used a whole-human kinome siRNA screen to identify functional actors in ERα modulation and showed the implication of proteins kinase suppressors of ras (KSR1). From those findings we evaluated the clinical impact of KSR1 variants in patients with ERα+ BC treated with TAM. DNA was obtained from 222 patients with advanced ERα+ BC treated with TAM who had undergone surgery from 1981 to 2003. We selected three potentially functional relevant KSR1 polymorphisms; two within the 3'UTR (rs224190, rs1075952) and one in the coding exon 7 (rs2293180). The primary end points were overall survival (OS) and disease-free survival (DFS). After a 6.4-year median follow-up, patients carrying the rs2241906 TT genotype showed shorter DFS (2.1 vs 7.1 years, P=0.005) and OS (2.6 vs 8.4 years P=0.002) than those with the TC or TT genotypes. Those associations remained significant in the multivariable analysis adjusting age, lymph node status, LMTK3 and IGFR variants and HER2 status. The polymorphisms rs2241906 and rs1075952 were in linkage disequilibrium. No association was shown between rs2293180 and survival. Among the actors of ERα signaling, KSR1 rs2241906 variants may predict survival in patients with advanced ERα+ BC treated with adjuvant TAM.