912 resultados para Advanced Tissue Sciences, Dermagraft, Regenerative Medicine, Tissue Engineering, Business Model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gels are elastic porous polymer networks that are accompanied by pronounced mechanical properties. Due to their biocompatibility, ‘responsive hydrogels’ (HG) have many biomedical applications ranging from biosensors and drug delivery to tissue engineering. They respond to external stimuli such as temperature and salt by changing their dimensions. Of paramount importance is the ability to engineer penetrability and diffusion of interacting molecules in the crowded HG environment, as this would enable one to optimize a specific functionality. Even though the conditions under which biomedical devices operate are rather complex, a bottom-up approach could reduce the complexity of mutually coupled parameters influencing tracer mobility. The present thesis focuses on the interaction-induced tracer diffusion in polymer solutions and their homologous gels, probed by means of Fluorescence Correlation Spectroscopy (FCS). This is a single-molecule-sensitive technique having the advantage of optimal performance under ultralow tracer concentrations, typically employed in biosensors. Two different types of hydrogels have been investigated, a conventional one with broad polydispersity in the distance between crosslink points and a so-called ‘ideal’, with uniform mesh size distribution. The former is based on a thermoresponsive polymer, exhibiting phase separation in water at temperatures close to the human body temperature. The latter represents an optimal platform to study tracer diffusion. Mobilities of different tracers have been investigated in each network, varying in size, geometry and in terms of tracer-polymer attractive strength, as perturbed by different stimuli. The thesis constitutes a systematic effort towards elucidating the role of the strength and nature of different tracer-polymer interactions, on tracer mobilities; it outlines that interactions can still be very important even in the simplified case of dilute polymer solutions; it also demonstrates that the presence of permanent crosslinks exerts distinct tracer slowdown, depending on the tracer type and the nature of the tracer-polymer interactions, expressed differently by each tracer with regard to the selected stimulus. In aqueous polymer solutions, the tracer slowdown is found to be system-dependent and no universal trend seems to hold, in contrast to predictions from scaling theory for non-interacting nanoparticle mobility and empirical relations concerning the mesh size in polymer solutions. Complex tracer dynamics in polymer networks may be distinctly expressed by FCS, depending on the specific synergy among-at least some of - the following parameters: nature of interactions, external stimuli employed, tracer size and type, crosslink density and swelling ratio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Osteoarticular allograft is one possible treatment in wide surgical resections with large defects. Performing best osteoarticular allograft selection is of great relevance for optimal exploitation of the bone databank, good surgery outcome and patient’s recovery. Current approaches are, however, very time consuming hindering these points in practice. We present a validation study of a software able to perform automatic bone measurements used to automatically assess the distal femur sizes across a databank. 170 distal femur surfaces were reconstructed from CT data and measured manually using a size measure protocol taking into account the transepicondyler distance (A), anterior-posterior distance in medial condyle (B) and anterior-posterior distance in lateral condyle (C). Intra- and inter-observer studies were conducted and regarded as ground truth measurements. Manual and automatic measures were compared. For the automatic measurements, the correlation coefficients between observer one and automatic method, were of 0.99 for A measure and 0.96 for B and C measures. The average time needed to perform the measurements was of 16 h for both manual measurements, and of 3 min for the automatic method. Results demonstrate the high reliability and, most importantly, high repeatability of the proposed approach, and considerable speed-up on the planning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the field of computer assisted orthopedic surgery (CAOS) the anterior pelvic plane (APP) is a common concept to determine the pelvic orientation by digitizing distinct pelvic landmarks. As percutaneous palpation is - especially for obese patients - known to be error-prone, B-mode ultrasound (US) imaging could provide an alternative means. Several concepts of using ultrasound imaging to determine the APP landmarks have been introduced. In this paper we present a novel technique, which uses local patch statistical shape models (SSMs) and a hierarchical speed of sound compensation strategy for an accurate determination of the APP. These patches are independently matched and instantiated with respect to associated point clouds derived from the acquired ultrasound images. Potential inaccuracies due to the assumption of a constant speed of sound are compensated by an extended reconstruction scheme. We validated our method with in-vitro studies using a plastic bone covered with a soft-tissue simulation phantom and with a preliminary cadaver trial.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stem cells reside within tissue, ensuring its natural ability to repair an injury. They are involved in the natural repair of damaged tissue, which encompasses a complex process requiring the modulation of cell survival, extracellular matrix turnover, angiogenesis, and reverse remodeling. To date, the real reparative potential of each tissue is underestimated and noncommittal. The assessment of the biophysical properties of the extracellular environment is an innovative approach to better understand mechanisms underlying stem cell function, and consequently to develop safe and effective therapeutic strategies replacing the loss of tissue. Recent studies have focused on the role played by biomechanical signals that drive stem cell death, differentiation, and paracrinicity in a genetic and/or an epigenetic manner. Mechanical stimuli acting on the shape can influence the biochemistry and gene expression of resident stem cells and, therefore, the magnitude of biological responses that promote the healing of injured tissue. Nanotechnologies have proven to be a revolutionary tool capable of dissecting the cellular mechanosensing apparatus, allowing the intercellular cross-talk to be decoded and enabling the reparative potential of tissue to be enhanced without manipulation of stem cells. This review highlights the most relevant findings of stem cell mechanobiology and presents a fascinating perspective in regenerative medicine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, enamel matrix derivative (EMD) has garnered much interest in the dental field for its apparent bioactivity that stimulates regeneration of periodontal tissues including periodontal ligament, cementum and alveolar bone. Despite its widespread use, the underlying cellular mechanisms remain unclear and an understanding of its biological interactions could identify new strategies for tissue engineering. Previous in vitro research has demonstrated that EMD promotes premature osteoblast clustering at early time points. The aim of the present study was to evaluate the influence of cell clustering on vital osteoblast cell-cell communication and adhesion molecules, connexin 43 (cx43) and N-cadherin (N-cad) as assessed by immunofluorescence imaging, real-time PCR and Western blot analysis. In addition, differentiation markers of osteoblasts were quantified using alkaline phosphatase, osteocalcin and von Kossa staining. EMD significantly increased the expression of connexin 43 and N-cadherin at early time points ranging from 2 to 5 days. Protein expression was localized to cell membranes when compared to control groups. Alkaline phosphatase activity was also significantly increased on EMD-coated samples at 3, 5 and 7 days post seeding. Interestingly, higher activity was localized to cell cluster regions. There was a 3 fold increase in osteocalcin and bone sialoprotein mRNA levels for osteoblasts cultured on EMD-coated culture dishes. Moreover, EMD significantly increased extracellular mineral deposition in cell clusters as assessed through von Kossa staining at 5, 7, 10 and 14 days post seeding. We conclude that EMD up-regulates the expression of vital osteoblast cell-cell communication and adhesion molecules, which enhances the differentiation and mineralization activity of osteoblasts. These findings provide further support for the clinical evidence that EMD increases the speed and quality of new bone formation in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Boron is one of the trace elements in the human body which plays an important role in bone growth. Porous mesopore bioactive glass (MBG) scaffolds are proposed as potential bone regeneration materials due to their excellent bioactivity and drug-delivery ability. The aims of the present study were to develop boron-containing MBG (B-MBG) scaffolds by sol-gel method and to evaluate the effect of boron on the physiochemistry of B-MBG scaffolds and the response of osteoblasts to these scaffolds. Furthermore, the effect of dexamethasone (DEX) delivery in B-MBG scaffold system was investigated on the proliferation, differentiation and bone-related gene expression of osteoblasts. The composition, microstructure and mesopore properties (specific surface area, nano-pore volume and nano-pore distribution) of B-MBG scaffolds have been characterized. The effect of boron contents and large-pore porosity on the loading and release of DEX in B-MBG scaffolds were also investigated. The results have shown that the incorporation of boron into MBG scaffolds slightly decreases the specific surface area and pore volume, but maintains well-ordered mesopore structure and high surface area and nano-pore volume compared to non-mesopore bioactive glass. Boron contents in MBG scaffolds did not influence the nano-pore size distribution or the loading and release of DEX. B-MBG scaffolds have the ability to maintain a sustained release of DEX in a long-term span. Incorporating boron into MBG glass scaffolds led to a controllable release of boron ions and significantly improved the proliferation and bone-related gene expression (Col I and Runx2) of osteoblasts. Furthermore, the sustained release of DEX from B-MBG scaffolds significantly enhanced alkaline phosphatase (ALP) activity and gene expressions (Col I, Runx2, ALP and BSP) of osteoblasts. These results suggest that boron plays an important role in enhancing osteoblast proliferation in B-MBG scaffold system and DEX-loaded B-MBG scaffolds show great potential as a release system to enhance osteogenic property for bone tissue engineering application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Delineating brain tumor boundaries from magnetic resonance images is an essential task for the analysis of brain cancer. We propose a fully automatic method for brain tissue segmentation, which combines Support Vector Machine classification using multispectral intensities and textures with subsequent hierarchical regularization based on Conditional Random Fields. The CRF regularization introduces spatial constraints to the powerful SVM classification, which assumes voxels to be independent from their neighbors. The approach first separates healthy and tumor tissue before both regions are subclassified into cerebrospinal fluid, white matter, gray matter and necrotic, active, edema region respectively in a novel hierarchical way. The hierarchical approach adds robustness and speed by allowing to apply different levels of regularization at different stages. The method is fast and tailored to standard clinical acquisition protocols. It was assessed on 10 multispectral patient datasets with results outperforming previous methods in terms of segmentation detail and computation times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an automatic method to segment brain tissues from volumetric MRI brain tumor images. The method is based on non-rigid registration of an average atlas in combination with a biomechanically justified tumor growth model to simulate soft-tissue deformations caused by the tumor mass-effect. The tumor growth model, which is formulated as a mesh-free Markov Random Field energy minimization problem, ensures correspondence between the atlas and the patient image, prior to the registration step. The method is non-parametric, simple and fast compared to other approaches while maintaining similar accuracy. It has been evaluated qualitatively and quantitatively with promising results on eight datasets comprising simulated images and real patient data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immune responses have the important function of host defense and protection against pathogens. However, the immune response also causes inflammation and host tissue injury, termed immunopathology. For example, hepatitis B and C virus infection in humans cause immunopathological sequel with destruction of liver cells by the host's own immune response. Similarly, after infection with lymphocytic choriomeningitis virus (LCMV) in mice, the adaptive immune response causes liver cell damage, choriomeningitis and destruction of lymphoid organ architecture. The immunopathological sequel during LCMV infection has been attributed to cytotoxic CD8(+) T cells. However, we now show that during LCMV infection CD4(+) T cells selectively induced the destruction of splenic marginal zone and caused liver cell damage with elevated serum alanin-transferase (ALT) levels. The destruction of the splenic marginal zone by CD4(+) T cells included the reduction of marginal zone B cells, marginal zone macrophages and marginal zone metallophilic macrophages. Functionally, this resulted in an impaired production of neutralizing antibodies against LCMV. Furthermore, CD4(+) T cells reduced B cells with an IgM(high)IgD(low) phenotype (transitional stage 1 and 2, marginal zone B cells), whereas other B cell subtypes such as follicular type 1 and 2 and germinal center/memory B cells were not affected. Adoptive transfer of CD4(+) T cells lacking different important effector cytokines and cytolytic pathways such as IFNγ, TNFα, perforin and Fas-FasL interaction did reveal that these cytolytic pathways are redundant in the induction of immunopathological sequel in spleen. In conclusion, our results define an important role of CD4(+) T cells in the induction of immunopathology in liver and spleen. This includes the CD4(+) T cell mediated destruction of the splenic marginal zone with consecutively impaired protective neutralizing antibody responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogels are considered promising for disc regeneration strategies. However, it is currently unknown whether the destruction of the natural interface between nucleus and surrounding structures caused by nucleotomy and an inadequate annulus closure diminishes the mechanical competence of the disc. This in vitro study aimed to clarify these mechanisms and to evaluate whether hydrogels are able to restore the biomechanical behaviour of the disc. Nucleus pressure in an ovine intervertebral disc was measured in vivo during day and night and adapted to an in vitro axial compressive diurnal (15min) and night (30min) load. Effects of different defects on disc height and nucleus pressure were subsequently measured in vitro using 30 ovine motion segments. Following cases were considered: intact; annulus incision repaired by suture and glue; annulus incision with removal and re-implantation of nucleus tissue; and two different hydrogels repaired by suture and glue. The intradiscal pressure in vivo was 0.75MPa during day and 0.5MPa during night corresponding to an in vitro axial compressive force of 130 and 58N, respectively. The compression test showed that neither the implantation of hydrogels nor the re-implantation of the natural nucleus, assumed as being the ideal implant, was able to restore the mechanical functionality of an intact disc. Results indicate the importance of the natural anchorage of the nucleus with its surrounding structures and the relevance of an appropriate annulus closure. Therefore, hydrogels that are able to mimic the mechanical behaviour of the native nucleus may fail in restoring the mechanical behaviour of the disc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although tumor budding is linked to adverse prognosis in colorectal cancer, it remains largely unreported in daily diagnostic work due to the absence of a standardized scoring method. Our aim was to assess the inter-observer agreement of a novel 10-high-power-fields method for assessment of tumor budding at the invasive front and to confirm the prognostic value of tumor budding in our setting of colorectal cancers. Whole tissue sections of 215 colorectal cancers with full clinico-pathological and follow-up information were stained with cytokeratin AE1/AE3 antibody. Presence of buds was scored across 10-high-power fields at the invasive front by two pathologists and two additional observers were asked to score 50 cases of tumor budding randomly selected from the larger cohort. The measurements were correlated to the patient and tumor characteristics. Inter-observer agreement and correlation between observers' scores were excellent (P<0.0001; intraclass correlation coefficient=0.96). A test subgroup of 65 patients (30%) was used to define a valid cutoff score for high-grade tumor budding and the remaining 70% of the patients were entered into the analysis. High-grade budding was defined as an average of ≥10 buds across 10-high-power fields. High-grade budding was associated with a higher tumor grade (P<0.0001), higher TNM stage (P=0.0003), vascular invasion (P<0.0001), infiltrating tumor border configuration (P<0.0001) and reduced survival (P<0.0001). Multivariate analysis confirmed its independent prognostic effect (P=0.007) when adjusting for TNM stage and adjuvant therapy. Using 10-high-power fields for evaluating tumor budding has independent prognostic value and shows excellent inter-observer agreement. Like the BRE and Gleason scores in breast and prostate cancers, respectively, tumor budding could be a basis for a prognostic score in colorectal cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background The aim of this study is to analyse CDKN2A methylation using pyrosequencing on a large cohort of colorectal cancers and corresponding non-neoplastic tissues. In a second step, the effect of methylation on clinical outcome is addressed. Methods Primary colorectal cancers and matched non-neoplastic tissues from 432 patients underwent CDKN2A methylation analysis by pyrosequencing (PyroMarkQ96). Methylation was then related to clinical outcome, microsatellite instability (MSI), and BRAF and KRAS mutation. Different amplification conditions (35 to 50 PCR cycles) using a range of 0-100% methylated DNA were tested. Results Background methylation was at most 10% with ≥35 PCR cycles. Correlation of observed and expected values was high, even at low methylation levels (0.02%, 0.6%, 2%). Accuracy of detection was optimal with 45 PCR cycles. Methylation in normal mucosa ranged from 0 to >90% in some cases. Based on the maximum value of 10% background, positivity was defined as a ≥20% difference in methylation between tumor and normal tissue, which occurred in 87 cases. CDKN2A methylation positivity was associated with MSI (p = 0.025), BRAF mutation (p < 0.0001), higher tumor grade (p < 0.0001), mucinous histology (p = 0.0209) but not with KRAS mutation. CDKN2A methylation had an independent adverse effect (p = 0.0058) on prognosis. Conclusion The non-negligible CDKN2A methylation of normal colorectal mucosa may confound the assessment of tumor-specific hypermethylation, suggesting that corresponding non-neoplastic tissue should be used as a control. CDKN2A methylation is robustly detected by pyrosequencing, even at low levels, suggesting that this unfavorable prognostic biomarker warrants investigation in prospective studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intervertebral disc (IVD) is a complex avascular organ of viscoelastic properties. The current research focus is to regenerate and to partially restore a degenerated IVD by ‘smart’ biomaterials in combination of cell therapy and/or growth factors. For the two tissues of the IVD, that is, the nucleus pulposus (NP) and the annulus fibrosus (AF), biomaterials of different mechanical properties are needed. The ideal biomaterial to restore the water-rich NP and the tensile-force resistant AF has not been identified yet. The lack of blood vessels and the relative scarcity of specially adapted cells of the IVD organ demand novel concepts of tissue-engineered biological approaches to regenerate or replace the IVD. Injectable biodegradable hydrogels with swelling properties are in focus for NP replacement, whereas electrospun biphasic composites and silk, among other biodegradable polymers, are discussed for AF reinforcement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tick-borne encephalitis virus is the causative agent of tick-borne encephalitis, a potentially fatal neurological infection. Tick-borne encephalitis virus belongs to the family of flaviviruses and is transmitted by infected ticks. Despite the availability of vaccines, approximately 2000-3000 cases of tick-borne encephalitis occur annually in Europe for which no curative therapy is available. The antiviral effects of RNA mediated interference by small interfering RNA (siRNA) was evaluated in cell culture and organotypic hippocampal cultures. Langat virus, a flavivirus highly related to Tick-borne encephalitis virus exhibits low pathogenicity for humans but retains neurovirulence for rodents. Langat virus was used for the establishment of an in vitro model of tick-borne encephalitis. We analyzed the efficacy of 19 siRNA sequences targeting different regions of the Langat genome to inhibit virus replication in the two in vitro systems. The most efficient suppression of virus replication was achieved by siRNA sequences targeting structural genes and the 3' untranslated region. When siRNA was administered to HeLa cells before the infection with Langat virus, a 96.5% reduction of viral RNA and more than 98% reduction of infectious virus particles was observed on day 6 post infection, while treatment after infection decreased the viral replication by more than 98%. In organotypic hippocampal cultures the replication of Langat virus was reduced by 99.7% by siRNA sequence D3. Organotypic hippocampal cultures represent a suitable in vitro model to investigate neuronal infection mechanisms and treatment strategies in a preserved three-dimensional tissue architecture. Our results demonstrate that siRNA is an efficient approach to limit Langat virus replication in vitro.